Hao Liping, Deng Jia, Li Guoping, et al. Characteristics of gps vapor in a persistent heavy rainfall related to southwest vortex. J Appl Meteor Sci, 2013, 24(2): 230-239.
Citation: Hao Liping, Deng Jia, Li Guoping, et al. Characteristics of gps vapor in a persistent heavy rainfall related to southwest vortex. J Appl Meteor Sci, 2013, 24(2): 230-239.

Characteristics of GPS Vapor in a Persistent Heavy Rainfall Related to Southwest Vortex

  • Received Date: 2012-08-03
  • Rev Recd Date: 2012-11-23
  • Publish Date: 2013-04-30
  • Using GPS Precipitable Water Vapor (GPS-PWV) observations from the ground-based GPS network in Chengdu Plain, NCEP reanalysis data, observed precipitation from automatic weather stations (AWS) and the specific humidity of single radiosonde station, the variations of water vapor in a persistent heavy rainfall process over the northeastern Sichuan Basin from 15 July to 18 July in 2010 is analyzed, focusing on the changes of GPS-PWV under the influencing system (southwest vortex) and its relationship with precipitation. Usually, there is a sharp rise of GPS-PWV when the precipitation occurs, and the altitude or terrain of each GPS station has an obvious impact on the value of GPS-PWV, precipitation and its peak. The GPS-PWV is not simple proportional related with the actual rainfall, the occurrence time and value of the precipitation have a certain relationship with the observatory sites and the movement of the southwest vortex. When the vortex circulation begins to develop, the instability of water vapor transport makes the GPS-PWV fluctuant increases. A large surge of GPS-PWV increase can be observed 13—17 h before the formation of the southwest vortex, reaching the maximum about 0—4 h before the vortex formation. The increase ends when it is fully formed, and the GPS-PWV gradually drops to the original level or even lower with the eastward shift of the southwest vortex. The positive area of the vertical flux of moisture divergence is well correspond with the area of precipitation, and it can better describe the strong rise, the movement of the convergence and divergence and water vapor transport than moisture flux divergence in the process, and the change of GPS-PWV is consistent with the vertical flux of moisture divergence. In addition, the trend of the water transport and convergence in the development process of the vortex circulation is consistent with the change of GPS-PWV, the surge and drop of GPS-PWV have some indicating significance in the formation or weakening of heavy rainfall. Compared with the radiosonde stations, AWS can well reflect the changes of water vapor near the ground, and radiosonde stations can provide the vertical distribution of the specific humidity. The regional ground-based GPS station network may capture the overall changes of the whole layer of atmospheric water vapor with the high time resolution. Therefore, more attention should be paid to the comprehensive application of water vapor information that obtained by these different observations means. Also, the southwest vortex as one of the major systems that induce the rainstorm process of the Sichuan Basin and the Yangtze Valley, adding to the important significance of GPS-PWV to discuss the variation of water vapor field before and after the generation of the southwest vortex.
  • Fig. 1  700 hPa geopotential height (contour, unit: gpm) and wind (vector) from NCEP reanalysis

    (a)1400 BT 16 July 2010, (b)0200 BT 17 July 2010

    Fig. 2  Time series of GPS-PWV and precipitation in Chengdu from 15 July to 19 July in 2010

    Fig. 3  Spatial distribution of daily average GPS-PWV from 0600 BT 16 July to 0500 BT 17 July in 2010(unit: mm)

    Fig. 4  Movement of southwest vortex from 15 July to 18 July in 2010

    Fig. 5  700 hPa moisture flux divergence from NCEP at 0200 BT (a) and 0800 BT (b) on 17 July 2010

    (unit:10-5g·cm-2·hPa-1·s-2)

    Fig. 6  Evolution of specific humidity of automatic weather station from 0600 BT 15 July to 0600 BT 19 July in 2010

    Fig. 7  Distribution of specific humidity profile at Wenjiang Station at 2000 BT 16 July and 2000 BT 17 July in 2010

    Table  1  The extremum, amplitude and duration of GPS-PWV with the rainfall of southwest vortex

    站点 GPS-PWV急升持续
    时间/h (有降水发生)
    GPS-PWV
    增幅/mm
    GPS-PWV
    极值/mm
    过程降水量
    /mm
    小时最大
    降水量/mm
    蒲江 15 26.0 62.6 95.4 33.8
    大邑 6 15.4 44.8 42.0 29.3
    成都 15 27.6 59.6 21.7 10.7
    龙泉驿 8 10.9 49.2 10.1 6.5
    都江堰 17 25.8 71.4 5.9 1.7
    DownLoad: Download CSV
  • [1]
    沈桐立, 崔丽曼, 陈海山.2002年6月14—15日暴雨的诊断分析和数值试验.大气科学学报, 2009, 32(4):483-489. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200904004.htm
    [2]
    张恒德, 宗志平, 张友姝. 2005年7月一次大暴雨过程的模拟和诊断分析.大气科学学报, 2011, 34(1):85-92. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201101012.htm
    [3]
    毕研盟, 毛节泰, 杨光林, 等.地基GPS遥感观测安徽地区水汽特征.气象科技, 2004, 32(4):225-228. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200404005.htm
    [4]
    柳典, 刘晓阳.地基GPS遥感观测北京地区水汽变化特征.应用气象学报, 2009, 20(3):346-352. doi:  10.11898/1001-7313.20090311
    [5]
    姚建群, 丁金彩, 王坚捍, 等.用GPS可降水量资料对一次大-暴雨过程的分析.气象, 2005, 31(4):48-52. doi:  10.7519/j.issn.1000-0526.2005.04.011
    [6]
    曹云昌, 方宗义, 李成才, 等.利用GPS和云图资料监测北京地区中小尺度降水的研究.高原气象, 2005, 24(1):91-95. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX20050100D.htm
    [7]
    李国翠, 李国平, 连志鸾, 等.不同云系降水过程中GPS可降水量的特征——华北地区典型个例分析.高原气象, 2008, 27(5):1066-1073. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200805015.htm
    [8]
    何平, 徐宝祥, 周秀骥, 等.地基GPS反演大气水汽总量的初步试验.应用气象学报, 2002, 13(2):179-183. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020222&flag=1
    [9]
    曹晓岗, 丁金才, 叶其欣, 等.利用GPS反演的水汽资料诊断入梅时间的方法.应用气象学报, 2007, 18(6):791-801. doi:  10.11898/1001-7313.200706121
    [10]
    李成才, 毛节泰.GPS地基遥感大气水汽总量分析.应用气象学报, 1998, 9(4):470-477. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980469&flag=1
    [11]
    Businger S, Chiswell S.The promise of GPS in atmospheric monitoring.Bull Amer Meteor Soc, 1996, 77:5-18. doi:  10.1175/1520-0477(1996)077<0005:TPOGIA>2.0.CO;2
    [12]
    Duan J, Bevis M, Fang Peng, et al.GPS meteorology:Directestimation of the absolute value of precipitable water.J Appl Meteor, 1996, 35(6):830-838. doi:  10.1175/1520-0450(1996)035<0830:GMDEOT>2.0.CO;2
    [13]
    李延兴, 徐宝祥, 胡新康, 等.应用地基GPS技术遥感大气柱水汽量的试验研究.应用气象学报, 2001, 12(1):61-68. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010107&flag=1
    [14]
    曹云昌, 方宗义, 夏青.GPS遥感大气可降水量与局地降雨关系的初步分析.应用气象学报, 2005, 16(1):54-59. doi:  10.11898/1001-7313.20050107
    [15]
    Takagi T, Peiming W, Kimura F.Diurnal variation of GPS precipitable water over the Tibetan Plateau during the post-monsoon period in 2000.J Meteor Soc Japan, 2000, 78:175-180. doi:  10.2151/jmsj1965.78.2_175
    [16]
    Osamu O, Fujio K.Behavior of GPS-derived precipitable water vapor in the mountain lee after the passage of a cold front.Geophys Res Lett, 2003, 30(14):17-46. doi:  10.1029/2003GL017572/full
    [17]
    何编, 孙照渤."0806"华南持续性暴雨诊断分析与数值模拟.气象科学, 2010, 30(2):164-171. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201002005.htm
    [18]
    何光碧, 屠妮妮, 张利红, 等.2010年7月14-18日大暴雨过程区域模式预报性能分析.高原山地气象研究, 2010, 30(4):8-17. http://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201004003.htm
    [19]
    Li Guoping, Fujio Kimura, Tomonori Sato, et al.A composite analysis of diurnal cycle of GPS precipitable water vapor in central Japan during calm summer days.Theoretical and Applied Climatology, 2008, 92(1-2):15-29. doi:  10.1007/s00704-006-0293-x
    [20]
    朱定真, 沈树勤, 李昕.华东地区大范围热带气旋大暴雨的综合分析.气象科学, 1997, 17(3):298-306. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199703012.htm
    [21]
    冉令坤, 楚艳丽.强降水过程中垂直螺旋度和散度通量及其拓展形式的诊断分析.物理学报, 2009, 58(11):8094-8106. doi:  10.7498/aps.58.8094
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(1)

    Article views (2972) PDF downloads(1652) Cited by()
    • Received : 2012-08-03
    • Accepted : 2012-11-23
    • Published : 2013-04-30

    /

    DownLoad:  Full-Size Img  PowerPoint