Cheng Zhengquan, Chen Lianshou, Li Ying. Influences of continental high on inland torrential rain associated with severe tropical storm Bilis (0604). J Appl Meteor Sci, 2013, 24(3): 257-267.
Citation: Cheng Zhengquan, Chen Lianshou, Li Ying. Influences of continental high on inland torrential rain associated with severe tropical storm Bilis (0604). J Appl Meteor Sci, 2013, 24(3): 257-267.

Influences of Continental High on Inland Torrential Rain Associated with Severe Tropical Storm Bilis (0604)

  • Received Date: 2012-08-09
  • Rev Recd Date: 2013-02-28
  • Publish Date: 2013-06-30
  • The remnant vortex of severe tropical storm Bilis (0604) endures over land for a few days, results in a large range of torrential rain over South China and leads to a calamity after it lands in Fujian Province on 14 July 2006. Many studies are carried out and reveal the crucial effect of low level southwesterly monsoon jet to the extreme rain event. But the influence of the continental high on the torrential rain is also worth being discussed. The analysis of circulation shows that during the torrential rain process associated with Bilis, the continental high at upper level strengthens, moves eastwards, and stretches downwards to the low level after Bilis makes landfall, which strengthens the northeasterly stream at the southeastern side of the continental high. When Bilis moves westwards, the northeasterly stream at the low and middle levels in the northwestern quadrant of Bilis, overlapping with that southeast to the continental high, is strengthened and increases the transfer of water vapor and instability energy to the inland, which is favorable to the maintenance of the remnant low and the typhoon trough. The vorticity above the inland rainstorm area remains high during the process. The budget shows that it is the long existing remnant vortex and typhoon trough whose intense convergence at the low level produces a large amount of vorticity, triggers the successive development of MCS and results in the continuous heavy rain. The contribution of the continental high is to help the maintenance of the remnant low and the typhoon trough, and to enlarge the horizontal advection of vorticity at the upper level. And a set of numerical sensitivity experiments reveals that, based on the background of strong southwestern monsoon, the intensification and eastward stretch of the continental high not only forces Bilis to move southwestwards, but also provides strong divergence at upper level over Bilis. Besides, the continental high influences the intensity and the distribution of heavy rain. The endurance of the remnant vortex and the typhoon trough, due to the strong low level southwesterly monsoon jet and the continental high, enhances the intensification of vorticity above the inland rainstorm area and the occurrence of torrential rain. And in the sensitivity experiment of weakened continental high, the northeasterly winds in the northwestern quadrant of Bilis become weakened and the transfer of water vapor to the inland rainstorm area and the vorticity decrease accordingly, which leads to the northward movement of rain bands and the decline of rain intensity with the decrease of the 24 h rainfall maximum in the inland by 1/3, compared with the control experiment.
  • Fig. 1  The track (a) and process rainfall (b) of Bilis

    Fig. 2  Circulations at 0000 UTC 15 July 2006 (a) wind (vector) and height (contour, unit:gpm) fields at 200 hPa, (b) wind (vector) and height (contour, unit:gpm) fields at 500 hPa, (c) wind (vector) and water vapor flux (shaded, unit: g·cm-1·hPa-1·s-1)) fields at 850 hPa

    Fig. 3  Regional average of geo-potential height of continental high at 200 hPa (a), 500 hPa (b) and 700 hPa (c) within 32°—40°N, 98°—108°E and regional average of wind velocity (unit:m·s-1) in the northwestern quadrant of Bilis (5°×5° domain) in July 2006

    Fig. 4  Dynamic composite fields at 850 hPa before and after landfall

    (vector: wind; contour: specific humidity, unit: g·kg-1; shaded: water vapor flux, unit: g·cm-1·hPa-1·s-1; coordinates represent grid number with the grid space 1.0 degree from typhoon center, while negative denotes westwards and southwards, TC center locates at the origin) (a) 2 days before landfall, (b) 2 days after landfall

    Fig. 5  Regional average of vorticity and its budget over the inland rainstorm area in July 2006

    (a) regional average of vorticity (unit: 10-5s-1), (b) horizontal divergence term (unit: 10-5s-2), (c) horizontal advection term (unit: 10-5s-1), (d) vertical transfer term (unit: 10-10s-2)

    Fig. 6  Comparison of control and sensitivity experiment outputs to observations

    (a) track, (b) minimal sea level pressure from 14 July to 16 July in 2006

    Fig. 7  Accumulated rainfall in 24h from observations, control and sensitivity experiments

    Fig. 8  Comparison of the regional average of wind velocity in the northwestern quadrant (a 5°×5° domain) of Bilis (a) and divergence at 200 hPa (10°×10° domain)(b) between control and sensitivity experiments in July 2006

    Fig. 9  Regional average of vorticity over the inland rainstorm area 24°—27°N, 112°—114°E in July 2006

    (a) control experiment, (b) sensitivity experiment

    Table  1  Survey of rain events caused by Bilis from 0000 UTC 14 July to 0000 UTC 18 July in 2006

    降水量 累计站次
    过程降水量≥200 mm 81
    过程降水量≥300 mm 31
    过程降水量≥400 mm 11
    过程降水量≥500 mm 3
    过程降水量≥600 mm 1
    24 h降水量≥100 mm 129
    24 h降水量≥250 mm 7
    DownLoad: Download CSV

    Table  2  Synchronous and lag correlation coefficients between regional average of 200 hPa height and that of lower levels over the continental high of 32°—40°N, 98°—108°E

    相关 300 hPa 500 hPa 700 hPa 850 hPa
    同步 0.996 0.832 0.519 0.361
    滞后6 h 0.965 0.814 0.642 0.579
    滞后12 h 0.935 0.864 0.730 0.633
    滞后18 h 0.942 0.924 0.745 0.568
    滞后24 h 0.935 0.903 0.745 0.602
    滞后30 h 0.856 0.837 0.839 0.730
    滞后36 h 0.765 0.838 0.815 0.767
    DownLoad: Download CSV
  • [1]
    陈久康, 丁治英.高低空急流与台风环流耦合下的中尺度暴雨系统.应用气象学报, 2000, 11(3):271-281. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000342&flag=1
    [2]
    李英, 陈联寿, 徐祥德.水汽输送影响登陆热带气旋维持和降水的数值试验.大气科学, 2005, 29(1):91-98. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200501010.htm
    [3]
    陈联寿.热带气旋研究和业务预报技术的发展.应用气象学报, 2006, 17(6):672-681. doi:  10.11898/1001-7313.20060605
    [4]
    李英, 陈联寿, 雷小途.高空槽对9711号台风变性加强影响的数值研究.气象学报, 2006, 64(5):553-563. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200605001.htm
    [5]
    于玉斌, 姚秀萍.对华北一次特大台风暴雨过程的位涡诊断分析.高原气象, 2000, 19(1):111-120. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200001013.htm
    [6]
    郑庆林, 宋青丽. 一个台风暴雨模式和山地地面拖曳效应对登陆台风暴雨增幅影响的数值研究//台风科学、业务试验和天气动力学理论的研究 (第四分册). 北京: 气象出版社, 1996: 215-221.
    [7]
    郑庆林, 吴军, 蒋平.我国东南海岸线分布对9216号台风暴雨增幅影响的数值研究.热带气象学报, 1996, 12(4):304-313. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX604.002.htm
    [8]
    Shen W, Ginis I.A numerical investigation of surface water over land on landfalling hurricanes.J Atmos Sci, 2002, 59(4):789-802. doi:  10.1175/1520-0469(2002)059<0789:ANIOLS>2.0.CO;2
    [9]
    陈联寿, 丁一汇.西太平洋台风概论.北京:科学出版社, 1979:442-447. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [10]
    张艳霞, 钱永甫, 王谦谦.西北太平洋热带气旋的年际和年代际变化及其与南亚高压的关系.应用气象学报, 2004, 15(1):74-80. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040110&flag=1
    [11]
    魏维, 张人禾, 温敏.南亚高压的南北偏移与我国夏季降水的关系.应用气象学报, 2012, 23(6):650-659. doi:  10.11898/1001-7313.20120602
    [12]
    朱乾根, 林锦瑞, 寿绍文, 等.天气学原理和方法.北京:气象出版社, 1992. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [13]
    康志明, 陈涛, 钱传海, 等.0604号强热带风暴"碧利斯"特大暴雨的诊断研究.高原气象, 2008, 27(3):596-607. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200803016.htm
    [14]
    程正泉.登陆热带气旋特大暴雨机制研究.北京:中国气象科学研究院, 2008.
    [15]
    程正泉, 陈联寿, 李英.登陆热带气旋与夏季风相互作用对暴雨的影响.应用气象学报, 2012, 23(6):660-671. doi:  10.11898/1001-7313.20120603
    [16]
    程正泉, 陈联寿. 0604号强热带风暴"碧利斯"与0605号台风"格美"强降水对比分析//第14届全国热带气旋科学讨论会, 2007: 59-65.
    [17]
    蒋小平, 刘春霞, 费志宾, 等.南海夏季风对强热带风暴Bilis (0604) 引发暴雨的影响.热带气象学报, 2008, 24(4):379-384. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200804012.htm
    [18]
    李英, 陈联寿, 王继志.登陆热带气旋长久维持与迅速消亡的大尺度环流特征.气象学报, 2004, 62(2):167-179. doi:  10.11676/qxxb2004.018
    [19]
    丁一汇.天气动力学中的诊断分析方法.北京:科学出版社, 1989:176-177. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [20]
    卢咸池, 何斌.初值格谱变换的比较分析.计算物理, 1992, 9(4):768-770. http://www.cnki.com.cn/Article/CJFDTOTAL-JSWL1992S2038.htm
    [21]
    孟智勇, 徐祥德, 陈联寿.9406号台风与中纬度系统相互作用的中尺度特征.气象学报, 2002, 60(1):31-39. doi:  10.11676/qxxb2002.003
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(2)

    Article views (3110) PDF downloads(1217) Cited by()
    • Received : 2012-08-09
    • Accepted : 2013-02-28
    • Published : 2013-06-30

    /

    DownLoad:  Full-Size Img  PowerPoint