Yuan Jie, Wei Fengying, Gong Yuanfa, et al. Effects of key regional SST inter-decadal anomaly on summer precipitation in Eastern China. J Appl Meteor Sci, 2013, 24(3): 268-277.
Citation: Yuan Jie, Wei Fengying, Gong Yuanfa, et al. Effects of key regional SST inter-decadal anomaly on summer precipitation in Eastern China. J Appl Meteor Sci, 2013, 24(3): 268-277.

Effects of Key Regional SST Inter-decadal Anomaly on Summer Precipitation in Eastern China

  • Received Date: 2012-08-23
  • Rev Recd Date: 2013-02-26
  • Publish Date: 2013-06-30
  • By the influence of the summer wind, the summer rain-band in Eastern China advances gradually from the south to the north in China, but under the influence of a variety of complicated factors, the rain-band propulsion speeds up or delays in a certain area, finally forms the different rain-band distribution types. First, four rain-band patterns are defined in summer precipitation in Eastern China and then four sea surface temperature (SST) modes which lead to summer precipitation anomaly are found using singular value decomposition (SVD) method, from which four key sea regions related significantly with summer rain-band patterns in Eastern China are selected, and characteristics of summer precipitation distribution in Eastern China and atmospheric circulation in East Asia are analyzed with composite analysis in the background of key sea regional winter sea surface temperature anomaly (SSTA) in terms of NOAA Twentieth Century reanalysis data, UKMO HADISST1 global monthly SST and monthly precipitation of 96 stations in Eastern China during 1931—2010.When the winter Kuroshio SST inter-decadal anomaly is positive phase, 500 hPa geopotential height field in summer shows that the blocking highs develop in the mid-high latitudes of Eurasia, the meridional circulation in westerlies are intensified, the cold forces are strong and the western Pacific subtropical high strengthens and shifts westwards. 850 hPa wind field anomaly in summer shows that the north of China is governed by anomalous anticyclone, over the South China Sea is southerly winds anomalies, and the East Asian summer monsoon is weak. The circulations are useful for Pattern Ⅲ in summer precipitation in Eastern China where the rain belt is located in the mid-lower reaches of the Yangtze. When the winter Southern Indian Ocean Dipole inter-decadal anomaly is positive phase, 500 hPa geopotential height field in summer shows that a positive anomaly distribution develops in the mid-high latitudes, the blocking highs develop, meridional circulation are intensified, cold forces are strong and the western Pacific high becomes strong and shifts southward and westwards. 850 hPa wind field anomaly in summer shows that north China is controlled by anti-cyclonic anomaly, the anomaly north airflow extends to Southern China region and the Somalia cross-equatorial flow strengthens, which bring more rainfall in the Southern China region.
  • Fig. 1  Spatial patterns of the first (a), the second (b), the third (c), the fourth (d) REOF modes, and the subdivisions of summer rain-band patterns in Eastern China (e)

    Fig. 2  The first-two-pair spatial distributions of SVD between the winter SST of the north Pacific and the summer precipitation in Eastern China

    Fig. 3  The same as in Fig. 2, but for the Indian Ocean

    Fig. 4  The annual value (solid line) and 10-year moving average index-values (dashed line) of Kuroshio (a) and SIOD (b)

    Fig. 5  Composite distributions of 500 hPa geopotential height anomalies (unit:dagpm) and 850 hPa wind anomalies in the inter-decadal variations of higher and lower of winter Kuroshio SST

    Fig. 6  The same as in Fig. 5, but for SIOD

    Table  1  The correlation coefficients between SST indexes and 4 rain-band indexes

    位置 指数 Ⅰ型 Ⅱ型 Ⅲ型 Ⅳ型
    北太平洋 Niño3指数 0.116 -0.033 0.119 -0.118
    黑潮指数 -0.210 0.113 0.333* 0.041
    印度洋 IOUI -0.152 0.049 0.241* -0.013
    SIODI -0.218* -0.121 -0.004 0.248*
    注:*表示相关系数达到0.05显著性水平。
    DownLoad: Download CSV
  • [1]
    Wei F Y.An integrative estimation model of summer rainfall-band pattern in China.Progress in Natural Science, 2007, 17(3):280-288. doi:  10.1080/10020070612331343259
    [2]
    Wei F Y, Zhang T.Oscillation characteristics of summer precipitation in the Huaihe River valley and relevant climate background.Science China:Earth Sciences, 2010, 53(2):301-316. doi:  10.1007/s11430-009-0151-7
    [3]
    韦志刚, 罗四维, 董文杰, 等.青藏高原积雪资料分析及其与我国夏季降水的关系.应用气象学报, 1998, 9(增刊):39-46. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX8S1.005.htm
    [4]
    翟盘茂, 周琴芳.北半球雪盖变化与我国夏季降水.应用气象学报, 1997, 8(2):230-235. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19970231&flag=1
    [5]
    魏凤英.全球海表温度变化与中国夏季降水异常分布.应用气象学报, 1998, 9(1):100-108. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX8S1.012.htm
    [6]
    高辉.淮河夏季降水与赤道东太平洋海温对应关系的年代际变化.应用气象学报, 2006, 17(1):1-9. doi:  10.11898/1001-7313.20060101
    [7]
    徐海明.华南夏季降水与全球海温的关系.南京气象学院学报, 1997, 20(3):392-399. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX703.017.htm
    [8]
    陈烈庭, 吴广仁.太平洋各区海温异常对中国东部夏季雨带类型的共同影响.大气科学, 1998, 5(4):718-726. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK805.005.htm
    [9]
    张卫青, 钱永甫.赤道中印度洋夏季变温对中国夏季降水影响的数值模拟.大气科学, 2002, 26(1):91-101. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200201008.htm
    [10]
    魏凤英.现代气候统计诊断预测技术.北京:气象出版社, 2007:239-259. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [11]
    李庆祥, 江志红, 黄群, 等.长江三角洲地区降水资料的均一性检验与订正试验.应用气象学报, 2008, 19(2):219-226. doi:  10.11898/1001-7313.20080238
    [12]
    North G R, Bell T, Cahalan R, et al.Sampling errors in the estimation of empirical orthogonal function.Mon Wea Rev, 1982, 110:699-706. doi:  10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
    [13]
    魏凤英, 陈官军, 李茜.中国东部夏季不同雨带类型的海洋和环流特征差异.气象学报, 2012, 70(5):1005-1020. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201205010.htm
    [14]
    Mann M E.On smoothing potentially non-stationary climate time series.Geophys Res Lett, 2002, 31:L07214.
    [15]
    陈兴芳, 宋文玲. 初夏降水的大气环流和海温特征分析及其预报//长期天气预报理论和方法的研究课题组. "八五"长期天气预报理论和方法的研究. 北京: 气象出版社, 1996: 101-107.
    [16]
    王黎娟, 何金海.黑潮地区海温影响南海夏季风爆发日期的数值试验.南京气象学院学报, 2000, 23(2):211-217. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200002008.htm
    [17]
    李忠贤, 孙照渤.1月份黑潮区域海温异常与我国夏季降水的关系.南京气象学院学报, 2004, 27(3):374-380. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200403010.htm
    [18]
    葛孝贞, 余志豪.海温变化与副热带高压活动的数值模拟.热带气象, 1986, 2(2):109-117. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX198602001.htm
    [19]
    Ashok K, Guan Z, Yamagata T.Impact of the Indian Ocean Dipole on the decadal relationship between the Indian Monsoon rainfall and ENSO.Geophys Res Lett, 28:4499-4502. doi:  10.1029/2001GL013294
    [20]
    肖子牛.印度洋偶极子型异常海温的气候影响.北京:气象出版社, 2006. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [21]
    李琰, 王亚非, 魏东.前期热带太平洋、印度洋海温异常对长江流域及以南地区6月降水的影响.气象学报, 2007, 65(3):393-405. doi:  10.11676/qxxb2007.037
    [22]
    梁肇宁, 温之平, 吴丽姬.印度洋海温异常和南海夏季风建立迟早的关系的耦合分析.大气科学, 2006, 30(4):619-634. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200604007.htm
    [23]
    贾小龙, 李崇银.南印度洋海温偶极子型振荡及其气候影响.地球物理学报, 2005, 48(6):1238-1249. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200506003.htm
    [24]
    崔锦, 杨修群, 张爱忠, 等.马斯克林高压的变化特征.气象科技, 2008, 36(1):35-42. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200801010.htm
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(1)

    Article views (2864) PDF downloads(1114) Cited by()
    • Received : 2012-08-23
    • Accepted : 2013-02-26
    • Published : 2013-06-30

    /

    DownLoad:  Full-Size Img  PowerPoint