Ding Li, Li Qingquan, Liu Yunyun. The tropical atmospheric intra-seasonal oscillation with different reanalysis data. J Appl Meteor Sci, 2013, 24(3): 314-322.
Citation: Ding Li, Li Qingquan, Liu Yunyun. The tropical atmospheric intra-seasonal oscillation with different reanalysis data. J Appl Meteor Sci, 2013, 24(3): 314-322.

The Tropical Atmospheric Intra-seasonal Oscillation with Different Reanalysis Data

  • Received Date: 2012-10-02
  • Rev Recd Date: 2013-02-25
  • Publish Date: 2013-06-30
  • Characteristics of the tropical intra-seasonal oscillation are analyzed using three kinds of data (NCEP/NCAR reanalysis data, NCEP/DOE reanalysis data and ECMWF/ERA40 reanalysis data) in three climate states of 1961—1991, 1971—2000 and 1981—2010. There is a significant 30—60 d oscillation period of 200 hPa zonal wind in different climate states of different reanalysis data. Different intra-seasonal oscillation characteristics can be found in different data and in different climate states. It is found that in 1981—2010 climate state compared with the other two climate states (1971—2000 and 1981—2010), annual cycle characteristics of the tropical intra-seasonal oscillation are more pronounced, strong in winter-spring and weak in summer-autumn. The tropical intra-seasonal oscillation is stronger in the tropical Indian Ocean and the tropical western Pacific Ocean, also its active areas extend eastwards and become larger. The eastward propagating energy of the tropical intra-seasonal oscillation centers more in 1—3 waves, while the westward propagating energy becomes weaker. The tropical intra-seasonal oscillation starts northward propagating later. It propagates southward strongly which spreads to the Southern Hemisphere in the beginning of May. NCEP/NCAR reanalysis data and NCEP/DOE reanalysis data match well in the annual cycle characteristics of tropical intra-seasonal oscillation, intensity and energy propagation. While NCEP/NCAR reanalysis data and ERA40 reanalysis data have some distinctions: The tropical intra-seasonal oscillation periods center in 20—100 d and its peak value is 55 d of NCEP/NCAR reanalysis data, while its oscillation periods are 20—60 d and its peak value is 50 d of ERA40 reanalysis data. As to the periods of 80—100 d, the oscillation pattern of ERA40 reanalysis data is stronger than that of NCEP/DOE reanalysis data. The tropical intra-seasonal oscillation variance contribution proportion of NCEP/NCAR reanalysis data is a little less than that of ERA40 reanalysis data in the tropical Indian Ocean and the tropical western Pacific Ocean, while stronger than that of ERA40 reanalysis data in the Eastern Equatorial Pacific Ocean. From December to the middle of March, the tropical intra-seasonal oscillation intensity of ECMWF data is stronger than that of NCEP/NCAR reanalysis data. While from the middle of March to November, the tropical intra-seasonal oscillation intensity of ERA40 reanalysis data is weaker than that of NCEP/NCAR reanalysis data; the tropical intra-seasonal oscillation phase of ERA40 reanalysis data is about 10 days ahead of NCEP/NCAR reanalysis data. The eastward propagating energy of the tropical intra-seasonal oscillation of NCEP/NCAR reanalysis data is weaker than that of ERA40 reanalysis data, while the westward propagating energy is stronger than that of ERA40 reanalysis data. In the middle of July, the northward propagating of NCEP/NCAR data is weaker than that of ERA40 reanalysis data.
  • Fig. 1  Power spectrum (solid line) of 200 hPa zonal wind averaged between 10°S-10°N and test line of 0.05 level (dashed line) in three different climate states

    Fig. 2  Explained variance percentages of 200 hPa zonal wind by 20—100 d filtered in three different climate states

    (unit:%; explained variance percentages of shaded areas are not less than 40%)

    Fig. 3  The difference of explained variance percentages of 200 hPa zonal wind by 20—100 d filtered between NCEPI and ERA40 data in 1961—1990

    (unit:%; the difference of shaded areas is not less than 2%)

    Fig. 4  The difference of explained variance of 200 hPa zonal wind by 20—100 d filtered between NCEPI data in 1981—2010 and 1961—1990

    (unit:%; the difference of shaded areas is not less than 4%)

    Fig. 5  The same as in Fig. 1, but for the annual cycle time series of tropical ISO index

    Fig. 6  The same as in Fig. 2, but for spatial-temporal spectrum of 200 hPa zonal wind

    (the horizontal axis represents wave frequency, positive value represents eastward propagation, negative value represents westward propagation; the vertical axis represents wave number, the spectrum of shaded areas is no less than 0.04 m2·s-2)

    Fig. 7  Latitude-time section of 200 hPa zonal wind ISO along 120°E in three different climate states (unit:m/s)

  • [1]
    Slingo J M, Rowell D P, Sperber K R.On the predictability of interannual behavior of the Madden-Julian oscillation and its relationship with El Nino.Q J Roy Meteor Soc, 1999, 125:583-609. https://www.osti.gov/scitech/biblio/289673
    [2]
    Salby M L, Hendon L H.Intraseasonal behavior of clouds, temperature and motion in the tropics.J Atmos Sci, 1994, 51(15):2207-2225. doi:  10.1175/1520-0469(1994)051<2207:IBOCTA>2.0.CO;2
    [3]
    智协飞, 朱乾根.北半球平流层低层大气季节内振荡特征.应用气象学报, 1995, 6(4):492-495. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19950475&flag=1
    [4]
    Madden R A, Julian P R.Description of a 40—50 day oscillation in the zonal wind in the tropical Pacific.J Atmos Sci, 1971, 28(5):702-708. doi:  10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
    [5]
    Madden R A, Julian P R.Description of global scale circulation cells in the tropics with a 40—50 day period.J Atmos Sci, 1972, 29(6):1109-1123. doi:  10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
    [6]
    Madden R A.Seasonal variations of the 40—50 day oscillation in the tropics.J Atmos Sci, 1986, 43(24):3138-3145. doi:  10.1175/1520-0469(1986)043<3138:SVOTDO>2.0.CO;2
    [7]
    Madden R A, Julian P R.Observations of the 40—50 day tropical oscillation—A review.Mon Wea Rev, 1994, 122(5):814-837. doi:  10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2
    [8]
    林爱兰, 梁建因, 谷德军.热带大气季节内振荡对东亚季风区的影响及不同时间尺度变化研究进展.热带气象学学报, 2008, 24(1):11-19. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200801003.htm
    [9]
    李崇银.大气低频振荡.北京:气象出版社, 1993. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [10]
    王遵娅, 丁一汇.夏季长江中下游旱涝年季节内振荡气候特征.应用气象学报, 2008, 19(6):710-715. doi:  10.11898/1001-7313.20080610
    [11]
    林爱兰, Li Tim, 李春晖.热带夏季风场与对流场季节内振荡传播模比较.应用气象学报, 2010, 21(5):545-557. doi:  10.11898/1001-7313.20100504
    [12]
    李崇银, 周亚平.热带大气季节内振荡和ENSO的相互关系.地球物理学报, 1994, 37(1):17-26. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX401.002.htm
    [13]
    Chen Longxun, Xie An.Westward propagation low-frequency oscillation and its teleconnection in the eastward hemisphere.Acta Meteor Sinica, 1998, 2(3):300-312. https://www.researchgate.net/publication/262419614_Predictability_of_the_quasi-biennial_oscillation_and_its_northern_winter_teleconnection_on_seasonal_to_decadal_timescales
    [14]
    Lau K M, Chan P H.The 40—50 day oscillation and the El Nino/Southern Oscillation:A new perspective.Bull Amer Meteor Soc, 1986, 67(5):533-534. doi:  10.1175/1520-0477(1986)067<0533:TDOATE>2.0.CO;2
    [15]
    李丽平, 王盘兴, 管兆勇, 等.热带对流季内振荡强度异常特征及其与海表温度的关系.应用气象学报, 2008, 19(2):145-152. doi:  10.11898/1001-7313.20080227
    [16]
    董敏, 吴统文, 王在志, 等. BCC_CSM1.0模式对20世纪降水及其变率的模拟.应用气象学报, 2013, 24(1):1-11. doi:  10.11898/1001-7313.20130101
    [17]
    Kalnay E, Kanmitsu M, Kistler R, et al.The NCEP/NCAR 40-year reanalysis project.Bull Amer Meteor Soc, 1996, 77(3): 437-471. doi:  10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [18]
    Kanamitsu M, Ebisuzaki W, Woollen J, et al.NCEP-DOE AMIP-Ⅱ reanalysis (R-2).Bull Amer Meteor Soc, 2002, 83(11):1631-1643. doi:  10.1175/BAMS-83-11-1631
    [19]
    GibsonJK, Kallberg P, Uppala S.The ECMWF ReAnalysis (ERA) Project.ECMWF Newsl, 1996, 73:7-17. https://en.wikipedia.org/wiki/ECMWF_re-analysis
    [20]
    Gibson J K, Kallberg P, Uppala S, et al.ECMWF ReAnalysis Project Rep Ser1.ECMWF, Shinfield Park, Reading, United Kingdom, 1997:1-72. http://www.ecmwf.int/
    [21]
    Annamalai H, Slingo J M, Sperber K R.The mean evolution and variability of the Asian Summer Monsoon: Comparison of ECMWF and NCEP/NCAR Reanalysis.Mon Wea Rev, 1999, 127(6):1157-1186. doi:  10.1175/1520-0493(1999)127<1157:TMEAVO>2.0.CO;2
    [22]
    Dell'Aquila A, Lucarini V, Ruti P M, et al.Hayashi spectra of the northern hemisphere mid-latitude atmospheric variability in the NCEP/NCAR and ECMWF reanalysis.Climate Dyn, 2005, 25(6):639-652. doi:  10.1007/s00382-005-0048-x
    [23]
    Pocard I, Janicot S, Camberlin P.Comparison of rainfall structures between NCEP/NCAR reanalysis and observed data over tropical Africa.Climate Dyn, 2000, 16(12):897-916. doi:  10.1007/s003820000087
    [24]
    Inoue T, Matsumoto J.A comparison of summer sea level pressure over east Eurasiabetween NCEP-NCAR reanalysis and ERA-40 for the Period 1960-1999.J Meteor Soc Japan, 2004, 82(3):951-958. doi:  10.2151/jmsj.2004.951
    [25]
    宋超辉.长年代气候资料统计处理结果的质量保障.气象科技, 2000, 28(4):53-56. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200004009.htm
    [26]
    Slingo J M, and Coauthors.Intraseasonal oscillation in 15 atmospheric general circulation models:Results from an AMIP subject.Climate Dyn, 1996, 12:325-357. doi:  10.1007/BF00231106
    [27]
    Hayashi Y.A method of analyzing transient waves by space-time cross spetra.J Appl Meteor, 1973, 12:404-408. doi:  10.1175/1520-0450(1973)012<0404:AMOATW>2.0.CO;2
    [28]
    黄嘉佑.气象中的谱分析.北京:气象出版社, 1984. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [29]
    Butterworth S.On the theory of filter amplifiers.Experimental Wireless and the Wireless Engineer, 1930, 7:536-541.
    [30]
    Sperber K R.Madden-Julian variability in NCAR CAM2.0 and CCSM2.0.Climate Dyn, 2004, 23:259-278.
    [31]
    刘芸芸, 俞永强, 何金海, 等.全球变暖背景下热带大气季节内振荡的变化特征及数值模拟.气象学报, 2006, 64(6):723-733. doi:  10.11676/qxxb2006.069
    [32]
    Zhu Qiangen, He Jinhai, Wang Panxing.A study of circulation differences between East-Asian and Indian summer monsoon with their interaction.Adv Atmos Sci, 1986, 3(4):466-477. doi:  10.1007/BF02657936
    [33]
    何金海, 杨松.东亚地区低频振荡的经向传播及中纬度的低频波动.气象学报, 1992, 5, 50(2):190-198. doi:  10.11676/qxxb1992.021
  • 加载中
  • -->

Catalog

    Figures(7)

    Article views (2724) PDF downloads(1101) Cited by()
    • Received : 2012-10-02
    • Accepted : 2013-02-25
    • Published : 2013-06-30

    /

    DownLoad:  Full-Size Img  PowerPoint