Gong Shaoqi. The spatial and temporal variations of weighted mean atmospheric temperature and its models in China. J Appl Meteor Sci, 2013, 24(3): 332-341.
Citation: Gong Shaoqi. The spatial and temporal variations of weighted mean atmospheric temperature and its models in China. J Appl Meteor Sci, 2013, 24(3): 332-341.

The Spatial and Temporal Variations of Weighted Mean Atmospheric Temperature and Its Models in China

  • Received Date: 2012-08-25
  • Rev Recd Date: 2013-03-18
  • Publish Date: 2013-06-30
  • Atmospheric water vapor plays an important role in the high-energy thermodynamics of the atmosphere and the generation of storm systems. Water vapor remote sensing can provide a detailed primary parameter within meteorological prediction and climate models. Ground-based GPS can obtain continuously precipitable water vapor with high spatial and temporal resolution since regional GPS networks are established widely all over the globe. Weighted mean atmospheric temperature (Tm) is a key parameter in retrieval of atmospheric precipitable water vapor from ground-based GPS measurements, and the precision of PW retrieved by ground-based GPS is proportional to the accuracy of estimated Tm. Using radiosonde data of 123 stations in China from 2008 to 2011, the relationship of Tm is analyzed with its affecting factors, latitude, altitude, surface temperature (Ts), partial pressure of water vapor (e) and atmospheric pressure (P0). Results show that Tm has a negative periodic correlativity with latitude and altitude as season changes, it has a good positive correlativity with surface temperature and partial pressure of water vapor transformed by natural logarithm, and it also has a negative one with atmospheric pressure. Furthermore, the spatial and temporal variations of Tm is discovered. The spatial variation of Tm displays the distinct latitudinal and climatic features and its spatial heterogeneity is evidently different in different regions, so Tm in different latitudinal zone is dissimilarly affected by seasonal climate change. For the temporal variation, Tm displays the prominent inter-annual variation and its diurnal variation is accord with the quadratic function. Given that, the regression models of Tm based on single factor Ts multi-factor Ts, e and P0 are deduced respectively corresponding to all areas in China, climatology divisions and seasonal divisions, and then these models are validated by radiosonde data from January to May in 2012. The results show that estimated Tm would achieve an uncertainty of 2% for precipitable water vaper retrieved from GPS measurements, and these models are suitable to estimate Tm for the retrieval from ground-based GPS measurements in China.
  • Fig. 1  Map of climatology divisions and radiosonde stations in China

    Fig. 2  Relative coefficient time series chart of Tm to latitude (a) and altitude (b)

    (x-axis for Julian day, 1 January 2008 for 1, 31 December 2011 for 1435)

    Fig. 3  Scatter plots of Tm to Ts (a), e (b), P0 (c), respectively

    Fig. 4  Spatial interpolation maps of Tm mean (a) and its standard deviation (b)(unit:K)

    Fig. 5  Time series chart of Tm from 1 Jan 2008 to 31 Dec 2011

    (a)Tm of the representative radiosonde station No.57127, (b) annual mean diurnal variation of Tm of the station No.57127 during four years, (c) annual mean diurnal variation of Tm in all the stations during four years

    Table  1  Regression model of Tm single factor

    分类 模型 模拟 预测 Bevis模型预测
    R2 样本量 均方根误差/K 样本量 均方根误差/K 样本量 均方根误差/K
    全国 Tm=105.45+0.594Ts 0.840* 174351 3.248 17900 3.393 17900 3.708
    高原高山气候 Tm=144.09+0.452Ts 0.765* 34343 2.843 3491 2.679 3491 4.045
    温带大陆性气候 Tm=140.63+0.467Ts 0.849* 37251 2.755 3819 2.650 3819 4.476
    温带季风气候 Tm=86.87+0.658Ts 0.871* 37899 3.368 3946 3.568 3946 3.882
    亚热带季风气候 Tm=90.10+0.650Ts 0.799* 57718 2.734 5891 2.945 5891 2.985
    热带季风气候 Tm=123.65+0.540Ts 0.604* 7143 2.165 753 2.154 753 2.719
    冬季 Tm=105.14+0.599Ts 0.778* 43738 3.527 6663 3.754 6663 4.289
    春季 Tm=84.14+0.666Ts 0.778* 44620 3.151 11237 3.031 111237 3.348
    夏季 Tm=39.81+0.815Ts 0.733* 44220 2.709
    秋季 Tm=90.71+0.648Ts 0.822* 41773 2.879
    注:*表示达到0.01显著性水平。
    DownLoad: Download CSV

    Table  2  Median parameters of variables for normalization

    分类 Tm/K Ts/K e/hPa P0/hPa
    全国 275.34 286.70 8.87 1015.20
    高原高山气候 269.63 279.65 4.61 1016.75
    温带大陆性气候 272.04 282.10 4.24 1016.65
    温带季风气候 273.18 283.68 7.61 1016.45
    亚热带季风气候 279.44 291.40 15.84 1014.50
    热带季风气候 282.27 294.65 20.46 1010.40
    冬季 266.94 271.70 2.92 1026.65
    春季 274.32 286.45 7.40 1014.15
    夏季 281.71 296.95 18.55 1004.90
    秋季 275.83 286.60 9.86 1017.85
    DownLoad: Download CSV

    Table  3  Regression model of Tm multi-factors

    分类 模型 模拟 预测
    R2 样本量 均方根误差/K 样本量 均方根误差/K
    全国 Tm=0.291+0.477Ts+0.00925lne+0.215P0 0.879* 174351 2.937 17900 3.136
    高原高山气候 Tm=0.602+0.472Ts+0.00215lne-0.067P0 0.880* 34343 2.507 3491 2.416
    温带大陆性气候 Tm=0.238+0.496Ts+0.00405lne+0.267P0 0.867* 37251 2.673 3819 2.558
    温带季风气候 Tm=0.480+0.450Ts+0.01220lne+0.071P0 0.893* 37899 3.118 3946 3.266
    亚热带季风气候 Tm=0.648+0.497Ts+0.00797lne-0.143P0 0.827* 57718 2.578 5891 2.726
    热带季风气候 Tm=-0.299+0.609Ts+0.00640lne+0.692P0 0.680* 7143 1.947 753 2.296
    冬季 Tm=0.591+0.446Ts+0.00878lne-0.036P0 0.810* 43738 3.526 6663 3.708
    春季 Tm=0.138+0.606Ts+0.00786lne+0.259P0 0.816* 44620 2.903 111237 2.669
    夏季 Tm=-0.064+0.695Ts+0.01094lne+0.406P0 0.686* 44220 2.142
    秋季 Tm=0.249+0.584Ts+0.00649lne+0.169P0 0.844* 41773 2.685
    注:*表示达到0.01显著性水平。
    DownLoad: Download CSV
  • [1]
    Li Z, Muller J P, Cross P.Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer measurements.J Geophys Res, 2003, 108(D20), 4651, doi: 10.1029/2003JD003372.
    [2]
    Dietrich S V R, Johnsen K P, Miao J, et al.Comparison of tropospheric water vapour over Antarctica derived from AMSU-B data, ground-based GPS data and the NCEP/NCAR reanalysis.J Meteorol Soc Japan, 2004, 82:259-267. doi:  10.2151/jmsj.2004.259
    [3]
    Gendt G, Dick G, Reigber C, et al.Near real time GPS water vapor monitoring for numerical weather prediction in Germany.J Meteorol Soc Japan, 2004, 82:361-370. doi:  10.2151/jmsj.2004.361
    [4]
    Dai A, Wang J, Ware R H, et al.Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity.J Geophys Res, 2002, 107(D10), 4090, doi:10.1029/ 2001JD000642.
    [5]
    Wu P M, Hamada J I, Mori S, et al.Diurnal variation of precipitable water over a mountainous area of Sumatra Island.J Appl Meteorol, 2003, 42:1107-1115. doi:  10.1175/1520-0450(2003)042<1107:DVOPWO>2.0.CO;2
    [6]
    Gradinarsky L P, Johansson J M, Bouma H R, et al.Climate monitoring using GPS.Phys Chem Earth, 2002, 27:335-340. doi:  10.1016/S1474-7065(02)00009-8
    [7]
    Bevis M, Businger S, Herring T A, et al.GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System.J Geophys Res, 1992, 97(D14):15787-15801. doi:  10.1029/92JD01517
    [8]
    Bevis M, Businger S, Chiswell S, et al.GPS meteorology-Mapping zenith wet delays onto precipitable water.J Appl Meteorol, 1994, 33(3):379-386. doi:  10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2
    [9]
    Tregoning P, Boers R, O'Brien D, et al.Accuracy of absolute precipitable water vapor estimates from GPS observations.J Geophys Res, 1998, 103:28701-28710. doi:  10.1029/98JD02516
    [10]
    Liou Y A, Teng Y T, Van Hove T, et al.Comparison perceptible water observation in the near tropics by GPS, microwave radiometer, and radiosondes.J Appl Meteorol, 2001, 40:5-15. doi:  10.1175/1520-0450(2001)040<0005:COPWOI>2.0.CO;2
    [11]
    Deblonde G, Macpherson S, Mireault Y, et al.Evaluation of GPS precipitable water over Canada and the IGS network.J Appl Meteorol, 2005, 44:153-166. doi:  10.1175/JAM-2201.1
    [12]
    Ohtani R, Naito I.Comparison of GPS-derived precipitable water vapors with radiosonde observations in Japan.J Geophys Res, 2000, 105:26917-26929. doi:  10.1029/2000JD900362
    [13]
    Saastamoinen J.Contributions to the theory of atmospheric refraction.Bull Geod, 1973, 107:13-34. doi:  10.1007/BF02522083
    [14]
    Hopfield H S.Tropospheric effect on electromagnetically measured range:Prediction from surface weather data.Radio Sci, 1971, 6(3):357-367. doi:  10.1029/RS006i003p00357
    [15]
    Black H D.An easily implemented algorithm for the tropospheric range correction.J Geophys Res, 1978, 83(B4):1825-1828. doi:  10.1029/JB083iB04p01825
    [16]
    李成才, 毛节泰.GPS地基遥感大气水汽总量分析.应用气象学报, 1998, 9(4):470-477. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980469&flag=1
    [17]
    于胜杰, 柳林涛.水汽加权平均温度回归公式的验证与分析.武汉大学学报:信息科学版, 2009, 34(6):741-744. http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200906025.htm
    [18]
    Wang Junhong, Zhang Liangying, Dai Aiguo.Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications.J Geophys Res, 2005, 110, D21101, doi: 10.1029/2005JD006215.
    [19]
    谷晓平, 王长耀, 蒋国华.地基GPS遥感大气水汽含量及在气象上的应用.气象科学, 2005, 25(5):543-550. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200505013.htm
    [20]
    丁海燕, 李青春, 郑柞芳, 等.利用北京GPS监测网分析夏季暴雨的水汽特征.应用气象学报, 2012, 23(1):47-58. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120106&flag=1
    [21]
    陈娇娜, 李国平, 黄文诗, 等.华西秋雨天气过程中GPS遥感水汽总量演变特征.应用气象学报, 2009, 20 (6):753-760. doi:  10.11898/1001-7313.20090614
    [22]
    柳典, 刘晓阳.地基GPS遥感观测北京地区水汽变化特征.应用气象学报, 2009, 20 (3):346-353. doi:  10.11898/1001-7313.20090311
    [23]
    毕研盟, 毛节泰, 毛辉.海南GPS网探测对流层水汽廓线的试验研究.应用气象学报, 2008, 19(4):412-419. doi:  10.11898/1001-7313.20080404
    [24]
    王晓英, 宋连春, 戴仔强, 等.香港地区加权平均温度特征分析.南京信息工程大学学报:自然科学版, 2011, 3(1):47-52. http://www.cnki.com.cn/Article/CJFDTOTAL-NJXZ201101007.htm
    [25]
    李国翠, 李国平, 杜成华, 等.华北地区地基GPS水汽反演中加权平均温度模型研究.南京气象学院学报, 2009, 32(1):81-86. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200811007020.htm
    [26]
    单九生, 邹海波, 刘熙明, 等.GPS/MET水汽反演中Tm模型的本地化研究.气象与减灾研究, 2012, 35(1):42-46. http://www.cnki.com.cn/Article/CJFDTOTAL-HXQO201201008.htm
    [27]
    吕弋培, 殷海涛, 黄丁发, 等.成都地区大气平均温度建模及其在GPS/PWV计算中的应用研究.测绘科学, 2008, 33(4):103-105. http://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200804038.htm
    [28]
    徐桂荣, 万蓉, 李武阶, 等.地基GPS反演大气可降水量方法的改进.暴雨灾害, 2009, 28(3):203-209. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX201111002047.htm
    [29]
    包东琴, 孟克其劳, 乌丽雅苏, 等.基于MATLAB的对流层加权平均温度模型的研究.科学技术与工程, 2012, 11(35):8840-8845. http://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201135040.htm
    [30]
    国家气象局.中华人民共和国气候图集.北京:气象出版社, 2002:6-7. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [31]
    Davis J, Herring T, Shapiro I, et al.Geodesy by radio interferometry:Effects of atmospheric modeling errors on estimates of baseline length.Radio Sci, 1985, 20:1593-1607. doi:  10.1029/RS020i006p01593
    [32]
    朱乾根, 林锦瑞, 寿绍文.天气学原理和方法.北京:气象出版社, 1981:401-410. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [33]
    周宇斌, 韩建平, 闻怡.对影响大气温度的几个因素的探讨.兰州大学学报:自然科学版, 1996, 32(2):14-18. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK602.003.htm
    [34]
    徐家良.近百余年来上海两次增暖期的特征对比及其成因.地理学报, 2000, 55(4):501-506. doi:  10.11821/xb200004013
    [35]
    周伟东, 朱洁华, 梁萍.近134年上海冬季气温变化特征及其可能成因.热带气象学报, 2010, 26(2):211-217. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201002011.htm
    [36]
    汪凯, 叶红, 唐立娜, 等.温日较差研究进展:变化趋势及其影响因素.气候变化研究进展, 2010, 6(6):417-423. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201006006.htm
    [37]
    周宇, 史军, 孙国武, 等.1873—2009年上海气温日较差变化及其影响因素.气象与环境学报, 2012, 28(1):24-30. http://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201201003.htm
    [38]
    李建国, 毛节泰, 李成才, 等.使用全球定位系统遥感水汽分布原理和中国东部地区加权"平均温度"的回归分析.气象学报, 1999, 57(3):283-292. doi:  10.11676/qxxb1999.027
    [39]
    Bokoye A I, Royer A, O'Neill N T, et al.Multisensor analysis of integrated atmospheric water vapor over Canada and Alaska.J Geophys Res, 2003, 108(D15), 4480, doi: 10.1029/2002JD002721.
    [40]
    王晓英, 戴仔强, 曹云昌, 等.中国地区地基GPS加权平均温度Tm统计分析.武汉大学学报:信息科学版, 2011, 36(4):412-416. http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201104009.htm
    [41]
    张崇甫, 陈述云, 胡希铃.统计分析方法及其应用.重庆:重庆大学出版社, 1995:5-9. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(3)

    Article views (3660) PDF downloads(645) Cited by()
    • Received : 2012-08-25
    • Accepted : 2013-03-18
    • Published : 2013-06-30

    /

    DownLoad:  Full-Size Img  PowerPoint