Xiao Yao, Zhao Lin, Li Ren, et al. The evaluation of SR-50 for snow depth measurements at Tanggula Area. J Appl Meteor Sci, 2013, 24(3): 342-348. .
Citation: Xiao Yao, Zhao Lin, Li Ren, et al. The evaluation of SR-50 for snow depth measurements at Tanggula Area. J Appl Meteor Sci, 2013, 24(3): 342-348. .

The Evaluation of SR-50 for Snow Depth Measurements at Tanggula Area

More Information
  • Snow cover, an important component of the cryosphere, has a profound impact on the surface and atmospheric heat conditions, ecological environment and water resources due to its special characteristics such as high reflectivity, high emissivity and low thermal conductivity. Because of its altitude and topography, the Tibet Plateau becomes the largest region with snow cover in the Northern Hemisphere. Snow cover data commonly used in scientific research is mostly collected by satellite, microwave snow monitoring data or the daily snow depth measurements from meteorological observation stations. These data show a disadvantage of insufficient time resolution when studying the detailed processes of snow cover and the impacts.Ultrasonic snow depth sensor SR-50, developed by Campbell Company, is an advanced observation instrument for snow depth. Using the measurements obtained by SR-50 at Tanggula (TGL) comprehensive monitoring site in the permafrost region on the Tibet Plateau, the evaluation of SR-50 for snow depth measurements is introduced and the characteristics of snow cover in permafrost regions are analyzed.The results indicate that SR-50 shows a very good ability in monitoring the real-time snow depth on different time scales. SR-50 could capture the detailed processes of surface snow cover, and gain real-time snow depth data. The processes of snow falling and melting could be well understood through the varieties of snow depth. The data of snow cover have a very important role in the study of snow cover processes and its impacts on land surface processes in permafrost regions. It shows that surface snow cover appeared in each month throughout the year in the target regions on the Tibet Plateau. The snow covered days mainly concentrated in the winter half year. In February, March, October and November, the number of snow covered days is larger, but in June, July and August it is much smaller. Overall, the snow depth at TGL site is much thinner compared with that of high latitude regions, and the duration of snow cover is much shorter due to the faster melting speed brought by much higher solar radiation. From 2005 to 2008, the instantaneous maximum snow depth of the region is 22 cm and the days with mean daily snow depth below 5 cm accounts for 71.58% of all snow days. In addition, recent raingauge record of solid precipitation is generally much lower than the actual situation because wind and other factors affect its capturing rate. The observations of snow depth by SR-50 provide a valuable dataset for revising the solid precipitation on the Tibet Plateau.
  • Fig  1.   Three processes of snowfall and surface snow cover at TGL site monitored by SR-50

    (a) day-scale process, (b) week-scale process, (c) month-scale process

    Fig  2.   The number of monthly snow-covered days at TGL site from 2005 to 2008

    Fig  3.   Daily average snow depth, surface albedo (a) and total precipitation (b) at TGL site

    Fig  4.   Daily total water equivalent of snow obtained by SR-50 and T-200B at TGL site in October 2008

    Table  1   Monthly and annual numbers of snow-covered days at TGL site from 2005 to 2008(unit:d)

    年份 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 年积雪日数*
    2005 19 8 13 12 20 3 0 1 4 16 10 2
    2006 0 10 21 11 6 1 1 1 7 14 30 2 82
    2007 0 21 13 5 8 4 4 1 3 0 0 5 106
    2008 7 22 4 4 7 1 2 11 21 31 30 31 58
    注:*按年度 (北半球是从前一年7月1日至当年6月30日) 统计全年的积雪日数。
    DownLoad: CSV

    Table  2   Distribution of daily average snow depth at TGL site from 2005 to 2008

    积雪深度/cm 积雪日数/d 所占比例/%
    > 10 77 17.23
    ≥5 173 28.42
    < 5 320 71.58
    < 3 276 61.74
    < 1 162 36.24
    DownLoad: CSV
  • 吴国雄.我国青藏高原气候动力学研究进展.第四纪研究, 2004, 24(1):1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200401000.htm
    叶笃正, 高由禧.青藏高原气象学.北京:科学出版社, 1979:276-316. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    吴国雄, 毛江玉, 段安民, 等.青藏高原影响亚洲夏季气候研究的最新进展.气象学报, 2004, 62(5):528-540. DOI: 10.11676/qxxb2004.054
    Barnett T P, Dumenil L, Schlese U, et al.The effect of Eurasian snow cover on regional and global climate variations.J Atmos Sci, 1989, 46(5):661-686. DOI: 10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2
    李培基.中国西部积雪变化特征.地理学报, 1993, 48(6):505-515. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB199306003.htm
    韦志刚, 黄荣辉, 陈文, 等.青藏高原地面站积雪的空间分布和年代际变化特征.大气科学, 2002, 26(4):496-508. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200204006.htm
    张东, 余志豪.青藏高原冬春季积雪异常与我国夏季低温的关系.气象科技, 1999, 19(1):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199901000.htm
    韦志刚, 吕世华.青藏高原积雪的分布特征及其对地面反照率的影响.高原气象, 1995, 14(1):63-73. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX501.007.htm
    张顺利, 陶诗言.青藏高原积雪对亚洲夏季风影响的诊断及数值研究.大气科学, 2002, 25(2):372-390. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200103008.htm
    沈志宝.藏北地区冬季降雪对地面反照率的影响.高原气象, 1996, 15(2):165-171. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX602.004.htm
    徐国昌, 李珊.青藏高原雪盖异常对我国环流和降水的影响.应用气象学报, 1994, 5(2):62-67. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19940111&flag=1
    韦志刚, 罗四维, 董文杰, 等.青藏高原积雪资料分析及其与我国夏季降水的关系.应用气象学报, 1998, 9(增刊Ⅰ):39-46. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX8S1.005.htm
    李庆, 陈月娟.青藏高原积雪异常对亚洲夏季风气候的影响.解放军理工大学学报:自然科学版, 2006, 7(6):605-612. http://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200606019.htm
    Khandekar M L.Eurasian snow cover, Indian monsoon and El Nino/Southern Oscilation—A synthesis.Atmosphere Ocean, 1991, 29(4):636-647. DOI: 10.1080/07055900.1991.9649422
    Cohen J, Rind D.The effect of snow cover on the climate.J Clim, 1991, 4:689-706. DOI: 10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2
    Campbell J L, Mitchell M J, Groffman P M, et al.Winter in northeastern North America:A critical period for ecological processes.Frontiers in Ecology and the Environment, 2005, 3(6):314-322. DOI: 10.1890/1540-9295(2005)003[0314:WINNAA]2.0.CO;2
    钟爱华, 严华生, 李跃清, 等.青藏高原积雪异常与大气环流异常间关系分析.应用气象学报, 2010, 21(1):37-46. DOI: 10.11898/1001-7313.20100105
    秦大河, 效存德, 丁永建, 等.国际冰冻圈研究动态和我国冰冻圈研究的现状与展望.应用气象学报, 2006, 17(6):649-656. DOI: 10.11898/1001-7313.20060602
    时兴合, 李凤霞, 扎西才让, 等.1961—2004年青海积雪及雪灾变化.应用气象学报, 2006, 17(3):376-382. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060364&flag=1
    郑照军, 刘玉洁, 张炳川.中国地区冬季积雪遥感监测方法改进.应用气象学报, 2004, 15(增刊):75-84. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2004S1011.htm
    李晓静, 刘玉洁, 朱小祥, 等.利用SSM/I数据判识我国及周边地区雪盖.应用气象学报, 2007, 18(1):12-20. DOI: 10.11898/1001-7313.20070103
    肖瑶, 赵林, 李韧, 姚济敏.CoLM模型在高原多年冻土区的单点模拟适用性.山地学报, 2011, 29(5):633-640. http://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201105018.htm
    Ryan W A, Doesken N J, Fassnacht S R.Evaluation of ultrasonic snow depth sensors for US snow measurements.J Atmos Ocean Technol, 2008, 25(5):667-684. DOI: 10.1175/2007JTECHA947.1
    Brazenec W A.Evaluation of Ultrasonic Snow Depth Sensors for Automated Surface Observing Systems (ASOS).Colorado:Colorado State University, 2005.
    Campbell Scientific Inc.Campbell Scientific Online SR-50 Manual.[2005-03-04].http://ftp.campbellsci.com/pub/outgoing/anuals/sr50.pdf.
    孙菽芬.陆面过程的物理、生化机理和参数化模型.北京:气象出版社, 2005. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
  • Related Articles

    [1]Chang Yue, Chen Hongbin, Shi Hongrong, Huang Xiaosong, Zhu Weifeng, Zhu Yanliang, Wang Pucai, Liu Jie. Comparison of Atmospheric Temperature and Humidity Sounding by Different Sensors Onboard a New Composite Wing UAV[J]. Journal of Applied Meteorological Science, 2023, 34(1): 78-90. DOI: 10.11898/1001-7313.20230107
    [2]Yang Zhibiao, Li Zhonghua, He Ju. Impact Evaluation for Replacement of Temperature-humidity Sensor of Automatic Weather Station[J]. Journal of Applied Meteorological Science, 2014, 25(2): 135-142.
    [3]Yang Kun, Xue Jianjun. The Relationship Between Snowfall and Snow Depth Using Intensive Snowfall Observations[J]. Journal of Applied Meteorological Science, 2013, 24(3): 349-355.
    [4]Zhao Liang, Zhu Yuxiang, Cheng Liang, Wang Chenglin. A Dynamic Approach to Retrieving Snow Depth Based on Integration of Remote Sensing and Observed Data[J]. Journal of Applied Meteorological Science, 2010, 21(6): 685-697.
    [5]Liu Shi, Wang Yong, Miao Qilong, Ding Yuanyuan. Variation Characteristics of Thermal Resources in Northeast China in Recent 50 Years[J]. Journal of Applied Meteorological Science, 2010, 21(3): 266-278.
    [6]Yang Ming, Li Weiliang, Liu Yu, Xu Haiming. Characteristics of the Climate Change in West China in Recent 50 Years[J]. Journal of Applied Meteorological Science, 2010, 21(2): 198-205.
    [7]Wang Futang. Advances of Agro-meteorological Research in CAMS During Recent 50 Years[J]. Journal of Applied Meteorological Science, 2006, 17(6): 778-785.
    [8]Zhu Lekun, Zheng Lichun. Uncertainty Analysis of Various Sensors Calibration Results for AWS[J]. Journal of Applied Meteorological Science, 2006, 17(5): 635-642.
    [9]Liu Chunzhen, Liu Zhiyu, Xie Zhenghui. STUDY OF TRENDS IN RUNOFF FOR THE HAIHE RIVER BASIN IN RECENT 50 YEARS[J]. Journal of Applied Meteorological Science, 2004, 15(4): 385-393.
    [10]Wang Shaowu, . A Study of the Trend of Climatic Change During the Period of Next 50 Years[J]. Journal of Applied Meteorological Science, 1995, 6(3): 333-342.

Catalog

    Figures(4)  /  Tables(2)

    Article views2584 PDF downloads1467 Cited by: 
    • Received : 2012-06-19
    • Accepted : 2012-12-25
    • Published : 2013-06-29

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return