Lin Ailan, Li Chunhui, Zheng Bin, et al. Modulation effect of MJO on the precipitation over Guangdong and its link with the direct impact system in June. J Appl Meteor Sci, 2013, 24(4): 397-406.
Citation: Lin Ailan, Li Chunhui, Zheng Bin, et al. Modulation effect of MJO on the precipitation over Guangdong and its link with the direct impact system in June. J Appl Meteor Sci, 2013, 24(4): 397-406.

Modulation Effect of MJO on the Precipitation over Guangdong and Its Link with the Direct Impact System in June

  • Received Date: 2012-11-22
  • Rev Recd Date: 2013-05-08
  • Publish Date: 2013-08-31
  • A distinguishing method of 500 hPa circulation systems influencing Guangdong is established, and the changes in modulation effect of MJO on the precipitation over Guangdong with the low latitude 500 hPa circulation system in June is analyzed using 30-year (1979—2008) 86-station observational daily precipitation of Guangdong and daily atmospheric data from NCEP-DOE Reanalysis 2. It is found that each phase of strong MJO may correspond to various levels of precipitation, of which the third phase has the highest probability of heavy precipitation (49.3%). The third phase is the only phase among 8 phases of MJO that strong precipitation days outnumber weak precipitation days. The 500 hPa circulation systems in low-latitude impacting Guangdong directly mainly include westerly trough, shallow westerly trough, flat westerly or border of subtropical high, subtropical high and tropical low or trough. The most strong modulation effect of MJO on the precipitation over Guangdong occurs in the case impacted by westerly trough, while the modulation effect is quite weak in the other cases. The precipitation anomaly percentage averaged over Guangdong is peak (valley) in the third phase (the sixth phase) under the case impacted by westerly trough. The changing in modulation effect of MJO on the precipitation over Guangdong with the low latitude circulation system is substantiality due to the changing of dynamic ascending motion and the water vapor transport, both of which are necessary for rainfall. In the westerly trough case, the subtropical high is strong and westward, water vapor transport to Guangdong increases significantly, and the dynamic ascending motion and high level divergence conditions are also enhanced, which results in Guangdong precipitation strengthening in the third phase of MJO. But in the sixth phase of MJO, the subtropical high is weak and eastward, water vapor transport to Guangdong decreases significantly although the dynamic ascending motion is enhanced, leading to weaker precipitation than that in the third phase of MJO. However, in the case without westerly trough, although water vapor transport to Guangdong increases in the third phase of MJO, the geopotential height anomaly is positive over East Asia and Western Pacific, therefore the dynamic ascending motion is reduced, so the precipitation is not much stronger than the other MJO phases. Therefore, the modulation of MJO on the precipitation over Guangdong needs the cooperation of westerly trough. The direct impact of westerly trough and remote correlation effect of the third phase of MJO are good prediction indicators for large domain heavy precipitation over Guangdong.
  • Fig. 1  Composite 500 hPa geopotential height for climatology and five-circulation types influencing Guangdong in June (unit: gpm)

    (a) climatic state, (b) flat westerly or border of subtropical high, (c) shallow westerly trough, (d) westerly trough, (e) tropical low or trough, (f) subtropical high

    Fig. 2  Composite 500 hPa geopotential height (unit: dagpm) for strong rainfall (a) and weak rainfall (b), 500 hPa geopotential height anomaly (unit: dagpm; the shaded indicates passing test of 0.05 level) for strong rainfall (c) and weak rainfall (d) in the third phase of strong MJO, composite anomalous fields of 850 hPa moisture flux (vector, unit: 10 kg·hPa-1·m-1·s-1), its scalar quantity (the shaded, unit: 10 kg·hPa-1·m-1·s-1) and moisture flux divergence (contour: equal to and less than zero, unit: 10-7 kg·hPa-1·m-2·s-1) for strong rainfall (e) and weak rainfall (f) in the third phase of strong MJO

    Fig. 3  Variation of daily precipitation anomaly percentage averaged over Guangdong with strong MJO phases for different 500 hPa circulation types

    Fig. 4  Composite distributions of daily precipitation anomaly percentage over Guangdong in strong MJO phases in the westerly trough case (the number in brackets indicates the number of days of composite analysis)

    Fig. 5  Composite fields of 500 hPa geopotential height (unit: dagpm), anomaly of 500 hPa geopotential height (unit: dagpm) and anomaly of 500 hPa vertical speed (unit: Pa·s-1) in the third phase and the sixth phase of strong MJO during the westerly trough case (the shaded indicates passing the test of 0.05 level)

    (a) geopotential height in the third phase, (b) geopotential height in the sixth phase, (c) anomaly of geopotential height in the third phase, (d) anomaly of geopotential height in the sixth phase, (e) anomaly of pressure vertical speed in the third phase, (f) anomaly of pressure vertical speed in the sixth phase

    Fig. 6  Composite anomalous fields of 850 hPa geopotential height (contour, unit: dagpm), water vapor flux (vector, unit: 10 kg·hPa-1·m-1·s-1) and its scalar anomaly (the shaded, unit: 10 kg·hPa-1·m-1·s-1) in the third phase and the sixth phase of strong MJO with the westerly trough and without westerly trough

    (a) westerly trough, the third phase, (b) westerly trough, the sixth phase, (c) without westerly trough, the third phase, (d) without westerly trough, the sixth phase

    Table  1  The number of days of different precipitation grade in 8 phases of strong MJO

    强MJO位相 弱降水日数/d 平均值附近降水日数/d 强降水日数/d 强降水所占百分比/%
    第1位相 41 12 30 36.1
    第2位相 43 8 23 31.1
    第3位相 29 9 37 49.3
    第4位相 41 8 19 27.9
    第5位相 41 4 18 28.6
    第6位相 42 6 20 29.4
    第7位相 8 2 7 41.2
    第8位相 27 6 19 36.5
    DownLoad: Download CSV
  • [1]
    Madden R A, Julian P R.Description of global scale circulation cells in the tropics with 40—50 day period.J Atmos Sci, 1972, 29(6):1109-1123. doi:  10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
    [2]
    Madden R A, Julian P R.Detection of a 40—50 day oscillation in the zonal wind in the tropical Pacific.J Atmos Sci, 1971, 28(5):702-708. doi:  10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
    [3]
    Yasunari T.A quasi-stationary appearance of 30 to 40 day period in the cloudiness fluctuations during the summer monsoon over India.J Meteor Soc Japan, 1980, 58:225-229. doi:  10.2151/jmsj1965.58.3_225
    [4]
    李崇银, 周亚萍.热带大气季节内振荡和ENSO的相互关系.地球物理学报, 1994, 37:17-26. doi:  10.3321/j.issn:0001-5733.1994.01.003
    [5]
    李崇银, 李桂龙.赤道太平洋大气低频振荡与海表水温的关系.科学通报, 1999, 44(1):78-81. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199901016.htm
    [6]
    Lin A, Li T.Energy spectrum characteristics of boreal summer intraseasonal oscillations:Climatology and variations during the ENSO developing and decaying phases.J Climate, 2008, 21: 6304-6320. doi:  10.1175/2008JCLI2331.1
    [7]
    林爱兰, Li T, 李春晖, 等.印度洋海温年际异常与热带夏季季节内振荡之间关系及其数值模拟研究.气象学报, 2010, 68(5):617-630. doi:  10.11676/qxxb2010.061
    [8]
    林爱兰, Li T, 李春晖.热带夏季风场与对流场季节内振荡传播模比较.应用气象学报, 2010, 21(5):545-557. doi:  10.11898/1001-7313.20100504
    [9]
    丁一汇, 梁萍.基于MJO的延伸预报.气象, 2010, 36(7):111-122. doi:  10.7519/j.issn.1000-0526.2010.07.018
    [10]
    梁萍, 丁一汇.基于季节内振荡的延伸预报试验.大气科学, 2012, 36(1):102-116. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201201009.htm
    [11]
    陈丽臻, 张先恭, 陈隆勋.长江流域两个典型旱涝年大气30—60天低频波差异的初步分析.应用气象学报, 1994, 5(4):483-488. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19940482&flag=1
    [12]
    何金海, 陈丽臻.南半球中纬度准40天振荡及其与北半球夏季风的关系.南京气象学院学报, 1989, 12(1):11-17. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX198901001.htm
    [13]
    陆尔, 丁一汇.1991年江淮特大暴雨与东亚大气低频振荡.气象学报, 1996, 54(6):730-736. doi:  10.11676/qxxb1996.075
    [14]
    Chen L, Zhu C, Wang W, et al.Analysis of the characteristics of 30—60 day low-frequency oscillation over Asia during 1998 SCSMEX.Adv Atmos Sci, 2001, 18:623-638. doi:  10.1007/s00376-001-0050-0
    [15]
    史学丽, 丁一汇.1994年中国华南大范围暴雨过程的形成与夏季风活动的研究.气象学报, 2000, 58(6):666-677. doi:  10.11676/qxxb2000.068
    [16]
    毛江玉, 吴国雄.1991年江淮梅雨与副热带高压的低频振荡.气象学报, 2005, 63(5):762-770. doi:  10.11676/qxxb2005.073
    [17]
    琚建华, 赵尔旭.东亚夏季风区的低频振荡对长江中下游旱涝的影响.热带气象学报, 2005, 21(2):163-171. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200502006.htm
    [18]
    陈隆勋, 张博, 张瑛.东亚季风研究的进展.应用气象学报, 2006, 17(6):711-724. doi:  10.11898/1001-7313.20060609
    [19]
    林爱兰, 梁建茵, 李春晖, 等."0506"华南持续性暴雨的季风环流背景.水科学进展, 2007, 18(3):424-432. http://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200703018.htm
    [20]
    王遵娅, 丁一汇.夏季长江中下游旱涝年季节内振荡气候特征.应用气象学报, 2008, 19(6):710-715. doi:  10.11898/1001-7313.20080610
    [21]
    林爱兰, 梁建茵, 谷德军.热带大气季节内振荡对东亚季风区的影响及不同时间尺度变化研究进展.热带气象学报, 2008, 24(1):11-19. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200801003.htm
    [22]
    王跃男, 陈隆勋, 何金海, 等.夏季青藏高原热源低频振荡对我国东部降水的影响.应用气象学报, 2009, 20(4):419-427. doi:  10.11898/1001-7313.20090405
    [23]
    贾燕, 管兆勇.江淮流域夏季降水异常与西北太平洋副热带30—60天振荡强度年际变化的联系.大气科学, 2010, 34(4):691-702. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201004004.htm
    [24]
    孙国武, 孔春燕, 信飞, 等.天气关键区大气低频波延伸期预报方法.高原气象, 2011, 30(3):594-599. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201103005.htm
    [25]
    Waliser D E, Jones C, Schemm J K E, et al.A statistical extended-range tropical forecast model based on the slow evolution of the Madden-Julian oscillation.J Climate, 1999, 12:1918-1939. doi:  10.1175/1520-0442(1999)012<1918:ASERTF>2.0.CO;2
    [26]
    Wheeler M, Weickmann K M.Real-time monitoring and prediction of modes of coherent synoptic to Intraseasonal tropical variability.Mon Wea Rev, 2001, 129:2677-2694. doi:  10.1175/1520-0493(2001)129<2677:RTMAPO>2.0.CO;2
    [27]
    Mo K C, Higgins R W.Tropical convection and precipitation regimes in the western United States.J Climate, 1998, 11:2404-2423. doi:  10.1175/1520-0442(1998)011<2404:TCAPRI>2.0.CO;2
    [28]
    Paegle J N, Lee A B, Kingtse C M.Intraseasonal modulation of South American summer precipitation.Mon Wea Rev, 2000, 128:837-850. doi:  10.1175/1520-0493(2000)128<0837:IMOSAS>2.0.CO;2
    [29]
    Higgins R W, Shi W.Intercomparison of the principal modes of interannual and intraseasonal variability of the North American monsoon system.J Climate, 2001, 14:403-417. doi:  10.1175/1520-0442(2001)014<0403:IOTPMO>2.0.CO;2
    [30]
    Carvalho L M V, Jones C, Liebmann B.The South Atlantic convergence zone:Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall.J Climate, 2004, 17:88-108. doi:  10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2
    [31]
    Jones C, Waliser D E, Lau K M, et al.Global occurrences of extreme precipitation events and the Madden-Julian oscillation: Observations and predictability.J Climate, 2004, 17:4575-4589. doi:  10.1175/3238.1
    [32]
    Barlow M, Wheeler M, Lyon B, et al.Modulation of daily precipitation over Southwest Asia by the Madden-Julian oscillation.Mon Wea Rev, 2005, 133:3579-3594. doi:  10.1175/MWR3026.1
    [33]
    Lorenz D J, Dennis L H.The effect of the MJO on the North American monsoon.J Climate, 2006, 19:333-343. doi:  10.1175/JCLI3684.1
    [34]
    Jeong J H, Kim B M, Ho C H, et al.Systematic variation in wintertime precipitation in East Asia by MJO-induced extratropical vertical motion.J Climate, 2008, 21:788-801. doi:  10.1175/2007JCLI1801.1
    [35]
    刘冬晴, 杨修群.热带低频振荡影响中国东部冬季降水的机理.气象科学, 2010, 30(5):684-693. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201005015.htm
    [36]
    袁为, 杨海军.Madden-Julian振荡对中国东南部冬季降水的调制.北京大学学报:自然科学版, 2010, 46(2):207-214. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201002008.htm
    [37]
    Jia X, Chen L, Ren F, et al.Impacts of the MJO on winter rainfall and circulation in China.Adv Atmos Sci, 2011, 28(3):521-533. doi:  10.1007/s00376-010-9118-z
    [38]
    吕俊梅, 琚建华, 任菊章, 等.热带大气MJO活动异常对2009—2010年云南极端干旱的影响.中国科学:地球科学, 2012, 55:98-112. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201204013.htm
    [39]
    章丽娜, 林鹏飞, 熊喆, 等.热带大气季节内振荡对华南前汛期降水的影响.大气科学, 2011, 35(3):560-570. http://cdmd.cnki.com.cn/Article/CDMD-10300-1015579026.htm
    [40]
    林爱兰, 李春晖, 谷德军, 等.热带季节内振荡对广东6月降水的影响.热带气象学报, 2013, 29(3):353-363. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201303001.htm
    [41]
    Kanamitsu M, Ebisuzaki W, Woollen J, et al.NCEP-DOE AMIP-Ⅱ Reanalysis (R-2).Bull Amer Meteor Soc, 2002, 83:1631-1643. doi:  10.1175/BAMS-83-11-1631
    [42]
    Liebmann B, Smith C A.Description of a complete (interpolated) outgoing longwave radiation dataset.Bull Amer Meteor Soc, 1996, 77:1275-1277.
    [43]
    Wheeler M, Hendon H H.An all-season real-time multivariate MJO index:Development of an index for monitoring and prediction.Mon Wea Rev, 2004, 132:1917-1932. doi:  10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
    [44]
    Zhang Renhe.Relations of water vapor transport from Indian monsoon with that over east Asia and the summer rainfall in China.Adv Atmos Sci, 2001, 18(5):1005-1017.
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(1)

    Article views (2475) PDF downloads(1074) Cited by()
    • Received : 2012-11-22
    • Accepted : 2013-05-08
    • Published : 2013-08-31

    /

    DownLoad:  Full-Size Img  PowerPoint