Sun Kangyuan, Ruan Zheng, Wei Ming, et al. Preliminary estimation of specific humidity profiles with wind profile radar. J Appl Meteor Sci, 2013, 24(4): 407-415.
Citation: Sun Kangyuan, Ruan Zheng, Wei Ming, et al. Preliminary estimation of specific humidity profiles with wind profile radar. J Appl Meteor Sci, 2013, 24(4): 407-415.

Preliminary Estimation of Specific Humidity Profiles with Wind Profile Radar

  • Received Date: 2012-10-12
  • Rev Recd Date: 2013-04-22
  • Publish Date: 2013-08-31
  • As a new type of detection instrument, wind profile radar (WPR) can detect meteorological factors such as wind profiles, spectral width, and refractive index structure constant and so on. The special detecting ability of WPR decides its broad application in atmospheric science research, meteorological operation application, climate research, aviation security and many other areas. With the advances of detection, a new specific humidity profiles retrieving method with WPR is proposed.Based on the turbulent backscattering theory, the method of estimating specific humidity profiles using boundary layer wind profile radar characteristics of clear-air echoes is devised. A retrieving test of specific humidity profiles are carried out with the data of observational campaign conducted from 15 Aug to 10 Sep in 2011 at a meteorological station of Dali, Yunnan Province, analyzing the main factors of retrieving accuracy. In the low atmosphere the refractive index gradient (M) is mainly influenced by three factors: dq/dz by 80.39%, the atmospheric temperature (T) by 12.75%, and the specific humidity q by 6.86% on average, respectively. Obviously, the dq/dz item is the most important factor, namely, there is a close relationship between the refractive index gradient and specific humidity.It is the measurement of refractive index gradient that turns out to retrieve specific humidity profiles with the help of WPR. The volume reflectivity (η) of turbulence echoes can indicate the fluctuation of atmosphere specific humidity due to the good correlation with M. Another factor that matters is the atmospheric turbulence dissipation rate which is under the influence of the signal spectral width observed by WPR. Radio Acoustic Sounding System (RASS) provides virtual temperature in retrieving of specific humidity profiles with the measurement of acoustic speed; PWV from GPS provides a method to obtain the initial boundary specific humidity; estimation of specific humidity profiles comparing with radiosonde data at the same time is conducted with WPR, RASS and GPS data.Results show that WPR can successfully retrieve specific humidity profiles with a certain degree of error. Among many factors that affect the retrieving accuracy, the determining of the sign of M, the refractive index structure constant and turbulence spectral width plays the key role, while the temperature and pressure are not so important. This new method can retrieve specific humidity profiles simply with the remote sensing instruments. The specific humidity retrieving from WPR, temperature profilers and initial boundary specific humidity from radiosonde shows the same trend comparing with which observed by radiosonde. The mean deviation and standard deviation turns out to be 0.75 g·kg-1 and 0.8 g·kg-1 respectively, both showing an increasing trend with height. With the assistance of WPR, GPS/PWV and RASS data, the retrieving mean deviation and standard deviation of specific humidity is 0.64 g·kg-1 and 0.85 g·kg-1 comparing with the observation of radiosonde.
  • Fig. 1  The height distribution of refractive index gradient M (a) and specific humidity q (b) at 2000 BT 2 Sep 2011

    Fig. 2  The PWV comparison of RS and GPS

    Fig. 3  The comparison of retrieved q0 and observed q0

    Fig. 4  The comparison of specific humidity between the retrieved from WPR and RS

    (a) the scatter diagram of humidity from WPR and RS,(b) the mean deviation between WPR and RS,(c) the standard deviation between WPR and RS

    Fig. 5  The specific humidity retrieving accuracy effect of refractive index structure constant Cn2 and spectral width σturb2

    Fig. 6  The comparison of specific humidity between the retrieved from WPR and RS

    (a) specific humidity profiles retrieved by sign of M from WPR and RS, (b) the sign of M from WPR and RS, (c) specific humidity profiles retrieved by sign of M from RS and observed

    Fig. 7  The comparison of specific humidity between the retrieved and RS

    (a) the scatter diagram of specific humidity from WPR,RASS,GPS and RS,(b) the mean deviation between WPR,RASS,GPS and RS,(c) the standard deviation between WPR,RASS,GPS and RS

    Fig. 8  The comparison of specific humidity profilers among the retrieved from WPR, RASS, GPS and RS, respectively

    (a) 0800 BT 16 Aug 2011, (b) 0800 BT 21 Aug 2011, (c) 2000 BT 21 Aug 2011

    Table  1  The ratio of vapor accounting for the total below different height

    距离地面的高度/m 距地高度单位气柱
    平均水汽总量/mm
    距地高度占全程
    水汽总量比例/%
    距地高度占全程
    水汽总量比例离差/%
    300 3.55 12.46 1.34
    1000 10.62 36.17 3.53
    1500 14.70 50.08 4.78
    2000 18.09 61.63 5.40
    3000 23.11 78.67 5.48
    4000 26.23 89.20 3.91
    5000 28.03 95.25 2.39
    6000 28.89 98.10 1.30
    7000 29.25 99.29 0.61
    DownLoad: Download CSV

    Table  2  The effect of taking RASS data and GPS data into account on errors

    引入数据 平均偏差/(g·kg-1) 标准差/(g·kg-1)
    RASS 0.06 0.32
    GPS -0.06 0.85
    DownLoad: Download CSV
  • [1]
    Gossard E E, Chadwick R, Neff W D, et al.The use of ground based Doppler radars to measure gradients, fluxes and structure parameters in elevated layers.Appl Meteor, 1982, 21:211-226. doi:  10.1175/1520-0450(1982)021<0211:TUOGBD>2.0.CO;2
    [2]
    Stankov B B, Martner B E, Politovich M K.Moisture profiling of the cloudy winter atmosphere using combined remote sensors.Atmos Oceanic Technol, 1995, 12:488-510. doi:  10.1175/1520-0426(1995)012<0488:MPOTCW>2.0.CO;2
    [3]
    Stankov B B, Westwater E R, Gossard E E.Use of wind profiler estimates of significant moisture gradients to improve humidity profile retrivial.Atmos Oceanic Technol, 1996, 13:1285-1290. doi:  10.1175/1520-0426(1996)013<1285:UOWPEO>2.0.CO;2
    [4]
    Solheim F, Godwin J R.Passive ground-based remote sensing of atmospheric temperature, water vapor, and cloud liquid water profiles by a frequency synthesized microwave radiometer.Meteor Zeitschrift, 1998, 7:370-376.
    [5]
    MacDonald A, Xie Y, Ware R.Diagnosis of three dimensional water vapor using slant observations from a GPS network.Mon Wea Rev, 2002, 130:386-397. doi:  10.1175/1520-0493(2002)130<0386:DOTDWV>2.0.CO;2
    [6]
    Ware R, Carpenter R, Guldner J, et al.A multi-channel radiometric profiler of temperature, humidity, and cloud liquid.Radio Sci, 2003, 38:1-13.
    [7]
    李宏华, 薛纪善, 王曼, 等.多普勒雷达风廓线的反演及边锋同化实验.应用气象学报, 2007, 28(1):50-57. doi:  10.11898/1001-7313.20070110
    [8]
    王令, 郑国光, 康玉霞, 等.多普勒雷达天气雷达径向速度图上的雹云特征.应用气象学报, 2006, 17(3):281-287. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060349&flag=1
    [9]
    阮征, 葛润生, 吴志根, 等.风廓线仪探测降水云体结构方法的研究.应用气象学报, 2002, 13(3):330-338. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020343&flag=1
    [10]
    邓闯, 阮征, 魏鸣, 等.风廓线雷达测风精度评估.应用气象学报, 2012, 23(5):523-532. doi:  10.11898/1001-7313.20120502
    [11]
    Gossard E E, Sengupta N.Measuring gradients of meteorological properties in elevated layers with a surface-based Doppler radar.Radio Sci, 1988, 23:625-639. doi:  10.1029/RS023i004p00625
    [12]
    Gossard E E, Wolfe D E, Moran K P, et al.Measurements of clear-air gradients and turbulence properties with radar wind profilers.Atmos Oceanic Technol, 1998, 15:321-342. doi:  10.1175/1520-0426(1998)015<0321:MOCAGA>2.0.CO;2
    [13]
    Gossard E E, Gutman S, Stankov B B, et al.Profile of radio refractive index and humidity derived from radar wind profilers and the Global Positioning System.Radio Sci, 1999, 34:371-383. doi:  10.1029/1998RS900029
    [14]
    Tsuda T, Miyamoto M, Furumoto J.Estimation of a humidity profile using turbulence echo characteristics.Atmos Oceanic Technol, 2001, 18:1214-1222. doi:  10.1175/1520-0426(2001)018<1214:EOAHPU>2.0.CO;2
    [15]
    Furumoto J, Kurimoto K, Tsuda T.Continuous observations of humidity profiles with the MU radar-RASS combined with GPS and radiosonde measurements.Atmos Oceanic Technol, 2003, 20:23-41. doi:  10.1175/1520-0426(2003)020<0023:COOHPW>2.0.CO;2
    [16]
    Furumoto J, Iwai H Fujii, Tsuda T, et al.Estimation of humidity profiles with the L-band boundary layer radar-RASS measurements.J Meteor Soc Japan, 2005, 83:895-908. doi:  10.2151/jmsj.83.895
    [17]
    Furumoto J, Shingo Imura, Tsuda T, et al.The variational assimilation method for the retrieval of humidity profiles with the wind-profiling radar.Atmos Oceanic Technol, 2007, 24:1525-1545. doi:  10.1175/JTECH2074.1
    [18]
    Bianco L, Cimini D, Frank S, et al.Combining microwave radiometer and wind profiler radar measurements for high-resolution atmospheric humidity profiling.Atmos Oceanic Technol, 2005, 22:949-965. doi:  10.1175/JTECH1771.1
    [19]
    Stankov B B, Gossard E E, Weber B L, et al.Humidity gradient profiles from wind profiling radars using the NOAA/ETL advanced Signal Processing System (SPS).Atmos Oceanic Technol, 2003, 20:3-22. doi:  10.1175/1520-0426(2003)020<0003:HGPFWP>2.0.CO;2
    [20]
    Imura S, Furumoto J, Tsuda T, et al.Estimation of humidity profiles by combining co-located VHF and UHF wind-profiling radar observation.Meteor Soc Japan, 2007, 85:301-319. doi:  10.2151/jmsj.85.301
    [21]
    朱庚华, 张彩云, 翁宁泉, 等.利用风廓线雷达测量数据反演大气湿度廓线.大气与环境光学学报, 2011, 6(5):336-341. http://www.cnki.com.cn/Article/CJFDTOTAL-GDJY201105005.htm
    [22]
    VanZandt T E, Green J L, Gage K S, et al.Vertical profiles of refractivity structure constant:Comparison of observations by the Sunset radar with a new theoretical model.Radio Sci, 1978, 13:819-829. doi:  10.1029/RS013i005p00819
    [23]
    Gage K S, Green J L, VanZandt T E.Use of Doppler radar for the measurement of atmospheric turbulence parameters from the intensity of clear-air echoes.Radio Sci, 1980, 15:407-416. doi:  10.1029/RS015i002p00407
    [24]
    Cohn S.Radar measurements of turbulence eddy dissipation rate in the troposphere comparison of techniques.Atmos Oceanic Technol, 1995, 12:85-95. doi:  10.1175/1520-0426(1995)012<0085:RMOTED>2.0.CO;2
    [25]
    Clayson C A, Lakshmi K.On turbulence and mixing in the free atmosphere inferred from high-resolution soundings.Atmos Oceanic Technol, 2008, 25:833-852. doi:  10.1175/2007JTECHA992.1
    [26]
    Ottersten H.Mean vertical gradient of potential refractive index in turbulent mixing and radar detection of CAT.Radio Sci, 1969, 4:1247-1249. doi:  10.1029/RS004i012p01247
    [27]
    钟刘军, 阮征, 葛润生, 等.风廓线雷达回波信号强度定标方法.应用气象学报, 2010, 21(5):598-605. doi:  10.11898/1001-7313.20100509
    [28]
    阮征, 何平, 葛润生.风廓线雷达对大气折射率结构常数的探测研究.大气科学, 2008, 32(1):133-140. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200801012.htm
    [29]
    Nastrom G D.Doppler radar apectral width broadening due to beamwidth and wind shear.Ann Geophys, 1997, 15:786-796. doi:  10.1007/s00585-997-0786-7
    [30]
    王莎, 阮征, 葛润生.风廓线雷达探测大气返回信号谱的仿真模拟.应用气象学报, 2012, 23(1):20-29. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120103&flag=1
    [31]
    符睿, 段旭, 刘建宇, 等.云南地基GPS观测大气可降水量变化特征.气象科技, 2010, 38(4):457-462. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201004012.htm
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(2)

    Article views (3548) PDF downloads(1789) Cited by()
    • Received : 2012-10-12
    • Accepted : 2013-04-22
    • Published : 2013-08-31

    /

    DownLoad:  Full-Size Img  PowerPoint