试验方案 | 参考系数 | 24 h预报误差干能量 /(105 J) |
误差减少 率/% |
CNR | 15.4869 | ||
EXP1 | 0.01 | 14.3733 | 7.19 |
EXP2 | 0.03 | 12.6838 | 18.10 |
EXP3 | 0.05 | 11.5815 | 25.22 |
EXP4 | 0.08 | 10.5205 | 32.07 |
Citation: | Huang Jiangping, Dong Peiming, Li Chao, et al. Influences of sensitive initial error on the numerical forecast of typhoon Kammuri (0809). J Appl Meteor Sci, 2013, 24(4): 425-434. |
Fig. 4 The contrast of 24-h forecast error of pressure perturbation (unit:Pa) at δ=0.4735 and u perturbation (unit:m·s-1) at 500 hPa between control experiment CNR and sensitivity experiment EXP4 (the black box denotes the target area)
(a) pressure perturbation in CNR, (b) pressure perturbation in EXP4, (c) u perturbation in CNR, (d) u perturbation in EXP4
Fig. 5 The horizontal distribution of sensitive initial error at 700 hPa (expect that pressure perturbation is at δ=0.7365, and all with background wind vector)
(a) u (unit: m·s-1), (b) v (unit: m·s-1), (c) wind vector, (d) pressure perturbation (unit: Pa), (e) potential temperature(unit: K), (f) humility (unit: g·kg-1)
Table 1 The experiment design and the integrated dry energy of 24-h forecast error in the target area
试验方案 | 参考系数 | 24 h预报误差干能量 /(105 J) |
误差减少 率/% |
CNR | 15.4869 | ||
EXP1 | 0.01 | 14.3733 | 7.19 |
EXP2 | 0.03 | 12.6838 | 18.10 |
EXP3 | 0.05 | 11.5815 | 25.22 |
EXP4 | 0.08 | 10.5205 | 32.07 |
Table 2 The dry energy of forecast error
试验 | 24 h预报误差干能量/(105J) | 误差减少率/% |
试验1 | 12.7473 | 17.69 |
试验2 | 12.3248 | 20.42 |
EXP4 | 10.5205 | 32.07 |
CNR | 15.4869 |
Table 3 The dry energy of forecast error
物理量 | 24 h预报误差干能量/(105J) | 减少率/% |
水平风场 | 11.3685 | 26.48 |
位温 | 13.9362 | 10.01 |
扰动气压 | 14.2984 | 7.67 |
湿度 | 15.2984 | 1.22 |
Table 4 The integrated dry energy of 24-h perturbation between linear and nolinear development for different initial time
起报时间 | 非线性演变/(105J) | 线性演变/(105J) | 误差/% |
2008-08-03T18:00 | 1.8083 | 1.40394 | 22.36 |
2008-08-05T00:00 | 3.9387 | 3.63357 | 14.85 |
2008-08-06T00:00 | 3.0678 | 1.98890 | 35.16 |
[1] |
董佩明, 张昕.目标观测设计与伴随敏感性分析.气象科技, 2004, 32(1):1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200401000.htm
|
[2] |
Rabier F, Klinker R, Courtier P, et al.Sensitivity of forecast errors to initial conditions.Qurt J R Meteor Soc, 1996, 122:121-150. doi: 10.1002/(ISSN)1477-870X
|
[3] |
Carla C.Monitoring the observation impact on the short-range forecast.Qurt J Roy Meteor Soc, 2009, 135:239-250. doi: 10.1002/qj.v135:638
|
[4] |
Pu Zhaoxia, Kalny E, John C, et al.Using forecast sensitivity patterns to improve future forecast skill.Qurt J Roy Meteor Soc, 1997, 123:1035-1053. doi: 10.1002/(ISSN)1477-870X
|
[5] |
Rolf H L.Initial condition sensitivity and error growth in forecasts of the 25 January 2000 east coast snowstorm.Mon Wea Rev, 2002, 130:957-974. doi: 10.1175/1520-0493(2002)130<0957:ICSAEG>2.0.CO;2
|
[6] |
Daryl T K.Application of adjoint-derived forecast sensitivities to the 24-25 January 2000 US east snowstorm.Mon Wea Rev, 2005, 133:3148-3175. doi: 10.1175/MWR3023.1
|
[7] |
Xiao Qingnong, Kuo Ying-hwa.Application of an adiabatic WRF adjoint to the investigation of the May 2004 McMurdo, Antarctica, severe wind event.Mon Wea Rev, 2006, 136:3696-3713.
|
[8] |
Wang Zhi, Gao Kun.Adjointed sensitivity experiment of meso-scale vortex in the Middle Reaches of the Yangtze River.Adv Atoms Sci, 2006, 23:268-281.
|
[9] |
钟科, 王业桂, 董佩明, 等.基于假反扰动的江淮梅雨锋低涡初始误差分析.气象与环境研究, 2007, 12(5):647-658. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200705008.htm
|
[10] |
Dong Peiming, Zhong Ke, Zhao Sixiong.Study on Adjoint-based Targeted Observation of Mesoscale Low on Meiyu Front, Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications.Springer-Verlag Berlin Heidelberg, 2009:253-268.
|
[11] |
游性恬, 张冬峰.有限区域内球谐展开的误差分析.应用气象学报, 1992, 3(3):359-362. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19920359&flag=1
|
[12] |
梁宝荣.0809号热带风暴"北冕"的特征分析.气象研究与应用, 2009, 30(1):38-39. http://www.cnki.com.cn/Article/CJFDTOTAL-GXQX2009S1019.htm
|
[13] |
Zhang X, Huang X, Pan N.Development of the upgraded tangent linear and adjoint of the Weather Research and Forecasting (WRF) Model.J Atmos Oceanic Technol, 2013, doi: 10.1175/JTECH-D-12-00213.1.
|
[14] |
任迪生, 沈学顺, 薛纪善, 等.GRAPES伴随模式底层数据栈优化.应用气象学报, 2011, 22(3):362-366. doi: 10.11898/1001-7313.20110313
|
[15] |
王曼, 李华宏, 段旭, 等.WRF模式三维变分中背景误差协方差估计.应用气象学报, 2011, 22(4):482-492. doi: 10.11898/1001-7313.20110411
|
[16] |
吴俞, 麻素红, 肖天贵, 等.T213L31模式热带气旋路径数值预报误差分析.应用气象学报, 2011, 22(2):182-193. doi: 10.11898/1001-7313.20110207
|
[17] |
费亮, 李小凡.高层冷涡的不同结构对台风运动的影响.应用气象学报, 1993, 4(1):1-7. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19930105&flag=1
|
[18] |
董佩明, 钟科, 赵思雄.区域初始分析误差对梅雨锋中尺度低压数值预报的影响.气象与环境研究, 2006, 11(5):565-581. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200605002.htm
|