Huang Jiangping, Dong Peiming, Li Chao, et al. Influences of sensitive initial error on the numerical forecast of typhoon Kammuri (0809). J Appl Meteor Sci, 2013, 24(4): 425-434.
Citation: Huang Jiangping, Dong Peiming, Li Chao, et al. Influences of sensitive initial error on the numerical forecast of typhoon Kammuri (0809). J Appl Meteor Sci, 2013, 24(4): 425-434.

Influences of Sensitive Initial Error on the Numerical Forecast of Typhoon Kammuri (0809)

  • Received Date: 2012-09-07
  • Rev Recd Date: 2013-04-15
  • Publish Date: 2013-08-31
  • Initial error is one of the key factors that have great effects on the accuracy of numerical forecast. To study the characteristics of initial error and its influence on the numerical prediction, an analysis procedure of the sensitive initial error of numerical forecast is developed based on WRF adjoint model and is used in the investigation of typhoon Kammuri (0809). The validity of the linear assumption on the study of typhoon case is firstly assessed prior to discussing any adjoint analysis results. It is done by evaluating the evolution differences of the perturbation between linear and nonlinear development, showing that the nonlinear perturbation evolution is well represented by the linear assumption during 24-h forecast. The sensitive initial error is then constructed using the information derived from adjoint sensitivity analysis, finding that the reference coefficient from 0.01 to 0.08 is proper to build the sensitive initial error. The result of 0.08 is the best in this case study. The numerical forecast error could be reduced and the prediction bias of typhoon trace could be improved greatly by removing the sensitive initial error from the initial field. This effect of the sensitive initial error derived from 24-h numerical forecast error affects the numerical forecast even within 60 hours. In addition, the analysis reveals that the sensitive initial error of regional short-term numerical forecast concentrates mainly around the weather system. It goes with typhoon circle and the pattern is almost consistent for all physical variables. The sensitive initial error in the middle-upper troposphere has slightly more contribution to the forecast than that in lower troposphere. Comparing the contribution of different physical variable, it is found that wind is the main contributor with pressure and humidity following.
  • Fig. 1  24-h development of u perturbation at 850 hPa (unit: m·s-1)

    (a)linear development, (b)nolinear development

    Fig. 2  The dry energy of 24-h linear and nolinear perturbation development at model levels

    Fig. 3  The bias of typhoon track between experiments and NCEP reanalysis

    Fig. 4  The contrast of 24-h forecast error of pressure perturbation (unit:Pa) at δ=0.4735 and u perturbation (unit:m·s-1) at 500 hPa between control experiment CNR and sensitivity experiment EXP4 (the black box denotes the target area)

    (a) pressure perturbation in CNR, (b) pressure perturbation in EXP4, (c) u perturbation in CNR, (d) u perturbation in EXP4

    Fig. 5  The horizontal distribution of sensitive initial error at 700 hPa (expect that pressure perturbation is at δ=0.7365, and all with background wind vector)

    (a) u (unit: m·s-1), (b) v (unit: m·s-1), (c) wind vector, (d) pressure perturbation (unit: Pa), (e) potential temperature(unit: K), (f) humility (unit: g·kg-1)

    Fig. 6  The section of sensitive initial error along 20°N

    (a) u (unit:m·s-1), (b) v (unit: m·s-1), (c) pressure perturbation (unit: Pa), (d) potential temperature (unit: K), (e) humility(unit: g·kg-1)

    Fig. 7  The forecast of typhoon track for different initial time

    (a) 0000 UTC 5 Aug 2008, (b) 1200 UTC 5 Aug 2008, (c) 0000 UTC 6 Aug 2008

    Table  1  The experiment design and the integrated dry energy of 24-h forecast error in the target area

    试验方案 参考系数 24 h预报误差干能量
    /(105 J)
    误差减少
    率/%
    CNR 15.4869
    EXP1 0.01 14.3733 7.19
    EXP2 0.03 12.6838 18.10
    EXP3 0.05 11.5815 25.22
    EXP4 0.08 10.5205 32.07
    DownLoad: Download CSV

    Table  2  The dry energy of forecast error

    试验 24 h预报误差干能量/(105J) 误差减少率/%
    试验1 12.7473 17.69
    试验2 12.3248 20.42
    EXP4 10.5205 32.07
    CNR 15.4869
    DownLoad: Download CSV

    Table  3  The dry energy of forecast error

    物理量 24 h预报误差干能量/(105J) 减少率/%
    水平风场 11.3685 26.48
    位温 13.9362 10.01
    扰动气压 14.2984 7.67
    湿度 15.2984 1.22
    DownLoad: Download CSV

    Table  4  The integrated dry energy of 24-h perturbation between linear and nolinear development for different initial time

    起报时间 非线性演变/(105J) 线性演变/(105J) 误差/%
    2008-08-03T18:00 1.8083 1.40394 22.36
    2008-08-05T00:00 3.9387 3.63357 14.85
    2008-08-06T00:00 3.0678 1.98890 35.16
    DownLoad: Download CSV
  • [1]
    董佩明, 张昕.目标观测设计与伴随敏感性分析.气象科技, 2004, 32(1):1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200401000.htm
    [2]
    Rabier F, Klinker R, Courtier P, et al.Sensitivity of forecast errors to initial conditions.Qurt J R Meteor Soc, 1996, 122:121-150. doi:  10.1002/(ISSN)1477-870X
    [3]
    Carla C.Monitoring the observation impact on the short-range forecast.Qurt J Roy Meteor Soc, 2009, 135:239-250. doi:  10.1002/qj.v135:638
    [4]
    Pu Zhaoxia, Kalny E, John C, et al.Using forecast sensitivity patterns to improve future forecast skill.Qurt J Roy Meteor Soc, 1997, 123:1035-1053. doi:  10.1002/(ISSN)1477-870X
    [5]
    Rolf H L.Initial condition sensitivity and error growth in forecasts of the 25 January 2000 east coast snowstorm.Mon Wea Rev, 2002, 130:957-974. doi:  10.1175/1520-0493(2002)130<0957:ICSAEG>2.0.CO;2
    [6]
    Daryl T K.Application of adjoint-derived forecast sensitivities to the 24-25 January 2000 US east snowstorm.Mon Wea Rev, 2005, 133:3148-3175. doi:  10.1175/MWR3023.1
    [7]
    Xiao Qingnong, Kuo Ying-hwa.Application of an adiabatic WRF adjoint to the investigation of the May 2004 McMurdo, Antarctica, severe wind event.Mon Wea Rev, 2006, 136:3696-3713.
    [8]
    Wang Zhi, Gao Kun.Adjointed sensitivity experiment of meso-scale vortex in the Middle Reaches of the Yangtze River.Adv Atoms Sci, 2006, 23:268-281.
    [9]
    钟科, 王业桂, 董佩明, 等.基于假反扰动的江淮梅雨锋低涡初始误差分析.气象与环境研究, 2007, 12(5):647-658. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200705008.htm
    [10]
    Dong Peiming, Zhong Ke, Zhao Sixiong.Study on Adjoint-based Targeted Observation of Mesoscale Low on Meiyu Front, Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications.Springer-Verlag Berlin Heidelberg, 2009:253-268.
    [11]
    游性恬, 张冬峰.有限区域内球谐展开的误差分析.应用气象学报, 1992, 3(3):359-362. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19920359&flag=1
    [12]
    梁宝荣.0809号热带风暴"北冕"的特征分析.气象研究与应用, 2009, 30(1):38-39. http://www.cnki.com.cn/Article/CJFDTOTAL-GXQX2009S1019.htm
    [13]
    Zhang X, Huang X, Pan N.Development of the upgraded tangent linear and adjoint of the Weather Research and Forecasting (WRF) Model.J Atmos Oceanic Technol, 2013, doi: 10.1175/JTECH-D-12-00213.1.
    [14]
    任迪生, 沈学顺, 薛纪善, 等.GRAPES伴随模式底层数据栈优化.应用气象学报, 2011, 22(3):362-366. doi:  10.11898/1001-7313.20110313
    [15]
    王曼, 李华宏, 段旭, 等.WRF模式三维变分中背景误差协方差估计.应用气象学报, 2011, 22(4):482-492. doi:  10.11898/1001-7313.20110411
    [16]
    吴俞, 麻素红, 肖天贵, 等.T213L31模式热带气旋路径数值预报误差分析.应用气象学报, 2011, 22(2):182-193. doi:  10.11898/1001-7313.20110207
    [17]
    费亮, 李小凡.高层冷涡的不同结构对台风运动的影响.应用气象学报, 1993, 4(1):1-7. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19930105&flag=1
    [18]
    董佩明, 钟科, 赵思雄.区域初始分析误差对梅雨锋中尺度低压数值预报的影响.气象与环境研究, 2006, 11(5):565-581. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200605002.htm
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(4)

    Article views (2921) PDF downloads(1147) Cited by()
    • Received : 2012-09-07
    • Accepted : 2013-04-15
    • Published : 2013-08-31

    /

    DownLoad:  Full-Size Img  PowerPoint