Yang Xiaofeng, Lu Qifeng, Yang Zhongdong. Assimilation experiment of LIS based on AMSR-E soil moisture products. J Appl Meteor Sci, 2013, 24(4): 435-445.
Citation: Yang Xiaofeng, Lu Qifeng, Yang Zhongdong. Assimilation experiment of LIS based on AMSR-E soil moisture products. J Appl Meteor Sci, 2013, 24(4): 435-445.

Assimilation Experiment of LIS Based on AMSR-E Soil Moisture Products

  • Received Date: 2012-07-03
  • Rev Recd Date: 2013-04-19
  • Publish Date: 2013-08-31
  • Soil moisture is an important part of the soil, playing an important role in energy and mass exchange between land and atmosphere. It is an important environment factor and the process parameter of hydrology, meteorology and other researches. In order to accurately depict and understand the interaction between land and atmosphere, precise and high resolution soil moisture contour information is needed. But whether using the objective measurement or numerical prediction of land surface process simulation, soil moisture contour line with spatial-temporal continuum and good precision can't be obtained. In order to eliminate the error, data assimilation method (EnKF) is used to process passive microwave inversion products (AMSR-E) and land surface model (NOAH) outputs, and then shallow soil moisture information is transmitted to deeper soil layers by land assimilation system (LIS). These methods are used to calculate soil moisture with high precise, high resolution and low error. Through these methods, 4-layer (10 cm, 30 cm, 60 cm, 100 cm) soil moisture data with spatial resolution of 0.25° by 0.25° for the year of 2003 are obtained.Agro-meteorological-station soil moisture data and ecological-station data are used to verify the 4-layer soil moisture results. The simulation accuracy of the land surface model is improved when data assimilation method is used, the simulation accuracy in different layers is different, and the accuracy in the grassland ecosystem is higher than that in crop and forest ecosystems. The spatial characteristics of assimilation results match with real values, which is high in the southeast and low in the northwest. Assimilation soil moisture data has more detailed information in horizontal scales compared to station data and has more detailed information in vertical scales compared to the passive microwave inversion products.The accuracy of the assimilation process depends on the passive microwave inversion products (AMSR-E). However, AMSR-E has stopped running and inversion errors of passive microwave inversion products will be accumulated in data assimilation run. In order to solve these problems, passive microwave inversion products of FY-3B can be used experimentally. Besides, assimilation experiment can be started by directly assimilate radiation brightness temperature of microwave channels. Simulation accuracy of soil moisture can be further improved through these processes. Effect of assimilation experiment is different in different vegetation, which mainly depends on capabilities of land surface model. Therefore, improving the land surface model is also an effective means to improve soil moisture simulation accuracy.
  • Fig. 1  Distribution of agro-meteorological stations and ecological stations used for testing

    Fig. 2  Time series of agro-meteorological-station observations and Experiment 1, Experiment 2 average results in 10 cm, 30 cm, 60 cm

    Fig. 3  Soil moisture distribution of Experiment 2 output, AMSR-E and agro-meteorological-station observations on 1 July 2003

    Fig. 4  Soil moisture comparison of agro-meteorological-station observations, outputs of Experiment 1 and Experiment 2 at Station A, B and C

    Fig. 5  Soil moisture comparison of observations, outputs of Experiment 1 and Experiment 2 in 10 cm, 30 cm, 60 cm, 100 cm layers at Xishuangbanna Station

    Fig. 6  Soil moisture comparison of observations, outputs of Experiment 1 and Experiment 2 in 10 cm, 30 cm, 60 cm layers at Haibei Station

    Fig. 7  Soil moisture comparison of observations, outputs of Experiment 1 and Experiment 2 in 10 cm, 30 cm, 60 cm, 100 cm layers at Fengqiu Station

    Table  1  Three-layer results of Experiment 1, Experiment 2 and agro-meteorological-station observations (unit:%)

    土壤深度 观测 试验1 试验2 差值 均方根误差
    试验1与观测 试验2与观测 试验1与观测 试验2与观测
    10 cm 19.70 16.56 17.68 3.14 2.02 9.29 8.70
    30 cm 25.42 17.59 21.27 7.83 4.15 12.52 10.80
    60 cm 25.18 21.24 27.65 7.59 -2.47 11.17 10.96
      注:以上数值均为土壤水分体积含水量平均值。
    DownLoad: Download CSV

    Table  2  10-cm soil moisture observations and outputs of Experiment 1, Experiment 2 in different vegetation conditions (unit:%)

    统计量 森林生态系统 草地生态系统 作物生态系统
    长白山站 西双版纳站 海北站 内蒙古站 桃园站 封丘站
    试验1偏差 6.97 3.07 5.02 3.22 3.36 3.12
    试验2偏差 5.27 2.23 0.71 1.90 2.49 0.59
    试验1均方根误差 8.65 4.09 5.66 4.32 4.10 3.89
    试验2均方根误差 7.62 3.76 2.53 3.53 4.26 1.79
      注:以上数值均为土壤水分体积含水量平均值。
    DownLoad: Download CSV
  • [1]
    仝兆远, 张万昌.土壤水分遥感监测的研究进展.水分保持通报, 2001, 27(4):107-113. http://cdmd.cnki.com.cn/Article/CDMD-82101-2004091083.htm
    [2]
    Lawford R G.An Overview of Soil Moisture and Its Role in the Climate System//Soil Moisture Modeling and Monitoring for Regional Planning, Proc No.9 NHRI Symposium.National Hydrological Research Centre, 1992.
    [3]
    孙丞虎, 李维京, 张祖强, 等.淮河流域土壤湿度异常的时空分布特征及其与气候异常关系的初步研究.应用气象学报, 2005, 16(2):129-138. doi:  10.11898/1001-7313.20050217
    [4]
    Koster R, Suarez M, Heiser M.Variance and predictability of precipitation at seasonal-to-interannual timescales.J Hydrometeorol, 2000, 1:26-46. doi:  10.1175/1525-7541(2000)001<0026:VAPOPA>2.0.CO;2
    [5]
    Yang F, Kumar A, Lau W K M.Potential predictability of US summer climate with 'prefect' soil moisture.J Hydrometeorol, 2004, 5:883-895. doi:  10.1175/1525-7541(2004)005<0883:PPOUSC>2.0.CO;2
    [6]
    左志燕, 张人禾.中国东部夏季降水与春季土壤湿度的联系.科学通报, 2007, 52(14):1722-1724. doi:  10.3321/j.issn:0023-074x.2007.14.021
    [7]
    Zhan Yanling, Lin Zhaohui.Therelationship between the June precipitation over the Mid-lower Reaches of the Yangtze River Basin and the spring soil moisture over the East Asian Monsoon Region.Acta Meteor Sinica, 2011, 25(3):355-363, doi:10:1007/S13351-011-0310-6.
    [8]
    郭维栋, 马柱国, 王会军.土壤湿度——一个跨季降水预测中的重要因子及其应用探讨.气候与环境研究, 2007, 12(1):20-27. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200701002.htm
    [9]
    Famiglietti J S, Wood E F.Evapotranspiration and runoff from large land areas:Land surface hydrology for atmospheric general circulation models.Surveys in Geophysics, 1991, 12:179-204. doi:  10.1007/BF01903418
    [10]
    Goodrich D C, Unkrich C L.KINEROS-A Kinematic Runoff and Erosion Model//Proc 2nd Federal Interagency Conf on Hydrologic Modeling.2002.
    [11]
    王磊, 文军, 张堂堂.卫星被动微波遥感土壤湿度研究进展.气象科技, 2009, 37(1):67-73. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200901015.htm
    [12]
    汪潇, 张增祥, 赵晓丽.遥感监测土壤湿度水分研究综述.土壤学报, 2007, 44(1):157-163. doi:  10.11766/200510200123
    [13]
    Kumar S V, Reichle R H, Koster R D, et al.Role of subsurface physics in the assimilation of surface soil moisture observations.J Hydrometeorology, 2009, 10(6), 1534.10.1175/JHM1134.1. doi:  10.1175/JHM1134.1
    [14]
    黄春林, 李新.陆面数据同化系统的研究综述.遥感技术与应用, 2004, 19(5):424-430. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201108000.htm
    [15]
    Brian A C, Lohmann D, Kenneth E M, et al.Land surface model spin-up behavior in the North American Land Data Assimilation System (NLDAS).J Geophys Res, 2003, 108:22-27.
    [16]
    林朝晖, 杨小松, 郭裕福.陆面过程模式对土壤含水量初值的敏感性研究.气候与环境研究, 2001, 6(2):240-248. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200102016.htm
    [17]
    Sujay V K, Rolf H R, Christa D P L, et al.A land surface data assimilation framework using the landinformation system:Description and applications.Advances in Water Resources, 2008, 31:1419-1432. doi:  10.1016/j.advwatres.2008.01.013
    [18]
    McLaughlin D.An integrated approach to hydrologic data assimilation:Interpolation, smoothing, andfiltering.Advances in Water Resources, 2002, 25:1275-1286. doi:  10.1016/S0309-1708(02)00055-6
    [19]
    李新, 小池俊雄, 程国栋.一个基于模拟退火法的陆面数据同化算法.地球科学进展, 2003, 18(4):632-636. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200304022.htm
    [20]
    师春香, 谢正辉, 钱辉, 等.基于卫星遥感资料的中国区域土壤湿度EnKF数据同化.中国科学:地球科学, 2011, 41(3):375-385. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201103009.htm
    [21]
    Entekhabi D, Nakamura H, Njoku E G.Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multi-frequency remotely sensed observations.IEEE Transactions on Geoscience and Remote Sensing, 1994, 32:438-448. doi:  10.1109/36.295058
    [22]
    Reichle R H, Entekhabi D.Downscaling of radio brightness measurements for soil moisture estimation:A four-dimensional variational data assimilation approach.Water Resour Res, 2001, 37(9):2353-2364. doi:  10.1029/2001WR000475
    [23]
    Houser P R, Shuttleworth W J, Famiglietti J S, et al.Integration of soil moisture remote sensing and hydrologic modeling using data assimilation.Water Resour Res, 1998, 34(1):3405-3420.
    [24]
    Chen T H, Coauthors.Cabauw experimental results fromthe Project for Inter-comparison of land-surface parameterization schemes.J Climate, 1997, 10:1194-1215. doi:  10.1175/1520-0442(1997)010<1194:CERFTP>2.0.CO;2
    [25]
    Kenneth M.The Community NOAH Land-Surface Moddle (L-SM).NCEP/EMC, 2005.
    [26]
    Evensen G, van Leeuwen P J.Assimilation of Geosat altimeter data for the Agulhas current using the ensemble Kalman filter with a quasi-geostrophic model.MonWea Rev, 1996, 124:85-96.
    [27]
    Pfaendtner J, Bloom S, Lamich D.Documentation of the Goddard Earth Observing System (GEOS) Data Assimilation System Version.NASA Tech Memo:104606, 1995.
    [28]
    Derber J C, Parrish D F, Lord S J.The new global operational analysis system at the National Meteorological Center.Wea Forecasting, 1991, 6:538-547. doi:  10.1175/1520-0434(1991)006<0538:TNGOAS>2.0.CO;2
    [29]
    Miller D A, White R A.A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling.Earth Interactions, 1998, 2(2):1-26. doi:  10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2
    [30]
    王秀明, 俞小鼎, 朱禾.NCEP在分析资料在强对流环境分析中的应用.应用气象学报, 2012, 23(2):139-146. doi:  10.11898/1001-7313.20120202
    [31]
    许影, 丁一汇, 赵宗慈.美国NCEP/NCAR近50年全球再分析资料在我国气候变化研究中可信度的初步分析.应用气象学报, 2001, 12(3):337-347. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010345&flag=1
    [32]
    元来福, 王继琴.从农业需水量评价我国的干旱状况.应用气象学报, 1995, 6(3):86-92. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19950355&flag=1
    [33]
    王晓云, 郭文利, 奚文, 等.利用"3S"技术进行北京地区土壤水分监测应用技术研究.应用气象学报, 2002, 13(4):422-431. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020457&flag=1
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(2)

    Article views (2862) PDF downloads(965) Cited by()
    • Received : 2012-07-03
    • Accepted : 2013-04-19
    • Published : 2013-08-31

    /

    DownLoad:  Full-Size Img  PowerPoint