Liu Hongya, Cao Liang. The relationship between power load and meteorological factors with refined power load forecast in Shanghai. J Appl Meteor Sci, 2013, 24(4): 455-463.
Citation: Liu Hongya, Cao Liang. The relationship between power load and meteorological factors with refined power load forecast in Shanghai. J Appl Meteor Sci, 2013, 24(4): 455-463.

The Relationship Between Power Load and Meteorological Factors with Refined Power Load Forecast in Shanghai

  • Received Date: 2013-03-15
  • Rev Recd Date: 2013-05-24
  • Publish Date: 2013-08-31
  • The forecast value of power load is an important reference for the power dispatch, and meteorological conditions have a significant impact on the diurnal and seasonal variation of the power load. Therefore, power load data of every 15 minutes in Shanghai and observations of Baoshan weather station (ID:58362) every 3 hours from 2004 to 2008 are analyzed to study the correlation. It's found that the meteorological power load is most closely related to the temperature. When the daily mean temperature (DMT) is great than 25 ℃, the daily mean meteorological power load rate (DMMPLR) is positive, DMMPLR increases with the increasing of DMT; while DMT is great than 18 ℃ and less than 25 ℃, DMMPLR is negative, DMMPLR increases as the DMT rises too; when DMT is between 6 ℃ and 18 ℃, DMMPLR is negative, DMMPLR decreases with the increasing of DMT; and while DMT is less than 6 ℃, DMMPLR is positive, the magnitude of changes with DMT is slightly. Moreover, the characteristics of power load diurnal variation curve display significant differences in different temperature ranges or under different weather types. Taking the summer season (T≥25 ℃) as an example, the peak of power load rate appears around 1100 BT in rainy-day, appears at about 1400 BT in the day with rainy-afternoon, and appears in the afternoon in the day with sunny-morning; the diurnal variations of hourly mean meteorological power load rate (HMMPLR) are basically the same in the day with rainy-morning or overcast-morning, suggesting that precipitation is not very important, but the sky condition has the main influence.Stepwise regression method is adopted to get the prediction equations of DMMPLR in each temperature range, and then the forecasting values of HMMPLR, under different weather types, calculated by multiplying the statistics coefficients (HMMPLR/DMMPLR) obtained in advance. The forecast test results in 2009 show that, using the 3-day average (before the forecast date) of the trend power load as the trend power load of the forecast date, the mean of absoulute relative error (MARE) of daily mean power load forecast value (DMPLFV) is about 3.6%. The MARE of DMPLFV of non-working days is larger than that of working days. In working days, while DMT is greater than 18 ℃, the MARE of DMPLFV is lower, when DMT is less than 18 ℃, the MARE of DMPLFV significantly increases. The MARE of hourly power load forecast value is about 4%.
  • Fig. 1  Daily mean power load in Shanghai from 2004 to 2008

    Fig. 2  Daily mean meteorological power load rate and daily mean temperature of working days and non-working days in Shanghai from 2004 to 2008

    Fig. 3  Daily mean meteorological power load rate and daily mean temperature in Shanghai from 2004 to 2008

    Fig. 4  Correlation coefficients of daily mean meteorological power load rate and meteorological elements in all seasons

    Fig. 5  Diurnal variation of hourly meteorological power load rate of working days and non-working days in all seasons

    Fig. 6  Diurnal variations of air temperature (a) and hourly meteorological power load rate (b) under different weather types in summer working days

    Fig. 7  Diurnal variation of hourly meteorological power load rate of different weather types in summer non-working days

    Fig. 8  The forecast relative error of daily mean power load and daily mean temperature in 2009

    Fig. 9  The mean of absolute relative error of hourly power load forecast in 2009

    Table  1  List of meteorological elements

    编号 要素
    1 C08
    2 C14
    3 ws
    4 P14
    5 R602
    6 R608
    7 R614
    8 R620
    9 hr
    10 T
    11 T5
    12 T3
    13 Tmax
    14 Tmin
    15 T24
    16 Tbody
    17 Tmax24
    18 Tmin24
    DownLoad: Download CSV

    Table  2  Absolute forecast relative error of daily mean power load with different time period in calculating trend power load

    趋势负荷计算时段 前1 d 前2 d 前1~3 d 前2~4 d 前1~4 d 前2~5 d 前1~5 d
    相对误差绝对值/% 3.83 4.49 3.61 3.89 3.6 3.97 3.69
    DownLoad: Download CSV

    Table  3  Absolute forecast relative error of daily mean power load in all seasons

    日平均气温区间 T≥25℃ 18℃≤T < 25℃ 6℃≤T < 18℃ T < 6℃
    工作日相对误差绝对值/% 2.2 2.32 4.58 3.47
    非工作日相对误差绝对值/% 3.41 5.2 4.18 6.62
    DownLoad: Download CSV
  • [1]
    胡江林, 陈正洪, 洪斌, 等.华中电网日负荷与气象因子的关系.气象, 2002, 28(3):14-18. doi:  10.7519/j.issn.1000-0526.2002.03.003
    [2]
    胡江林, 陈正洪, 洪斌, 等.基于气象因子的华中电网负荷预测方法研究.应用气象学报, 2002, 13(5):600-608. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020577&flag=1
    [3]
    张立祥, 陈力强, 王明华.城市供电量与气象条件的关系.气象, 2000, 26(7):27-31. doi:  10.7519/j.issn.1000-0526.2000.07.007
    [4]
    陈正洪, 洪斌.华中电网四省日用电量与气温关系的评估.地理学报, 2000, 55(增刊):34-38. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB2000S1006.htm
    [5]
    臧晓钟, 周霖华, 王子缘, 等.常州用电负荷量气象指数初探.气象科学, 2001, 21(4):462-467. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200104009.htm
    [6]
    蔡新玲, 徐虹, 乔秋文.陕西电网用电量与气象因子的关系.西北水力发电, 2003, 19(4):40-43. http://www.cnki.com.cn/Article/CJFDTOTAL-SXFD200304012.htm
    [7]
    [8]
    段海来, 千怀遂.广州市城市电力消费对气候变化的响应.应用气象学报, 2009, 20(1):80-87. doi:  10.11898/1001-7313.20090110
    [9]
    张海东, 孙照渤, 郑艳, 等.温度变化对南京城市电力负荷的影响.大气科学学报, 2009, 32(4):536-542. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200904011.htm
    [10]
    张自银, 马京津, 雷杨娜.北京市夏季电力负荷逐日变率与气象因子关系.应用气象学报, 2011, 22(6):760-765. doi:  10.11898/1001-7313.20110615
    [11]
    臧传花, 赵敏芬, 卢兆民.基于天气分型的夏季逐时用电负荷预报.气象, 2007, 33(1):107-111. doi:  10.7519/j.issn.1000-0526.2007.01.017
    [12]
    张小玲, 王迎春.北京夏季用电量与气象条件的关系及预报.气象, 2002, 28(2):17-21. doi:  10.7519/j.issn.1000-0526.2002.02.004
    [13]
    罗慧, 巢清尘, 李奇, 等.气象要素在电力负荷预测中的应用.气象, 2005, 31(6):15-18. doi:  10.7519/j.issn.1000-0526.2005.06.003
    [14]
    杨静, 陈冬梅, 周庆亮, 等.T213产品在电负荷预测中的应用.气象, 2007, 36 (3):123-127.
    [15]
    吴向阳, 张海东.北京市气温对电力负荷影响的计量经济分析.应用气象学报, 2008, 19(5):531-538. doi:  10.11898/1001-7313.20080503
    [16]
    王立静, 王峰, 李金亮.滨州市用电负荷与气象要素的关系及预测.安徽农业科学, 2010, 38(25):13854-13856. doi:  10.3969/j.issn.0517-6611.2010.25.118
    [17]
    徐方龙, 谢国栋, 黄苏融, 等.上海市市区供电局季节性负荷分析.电网技术, 1999, 23(12):16-19. doi:  10.3321/j.issn:1000-3673.1999.12.005
    [18]
    廖文炜, 曾二贤.基于动态机制灰色模型的电力需求预测.电力建设, 2010, 31(10):6-9. doi:  10.3969/j.issn.1000-7229.2010.10.002
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(3)

    Article views (3110) PDF downloads(1734) Cited by()
    • Received : 2013-03-15
    • Accepted : 2013-05-24
    • Published : 2013-08-31

    /

    DownLoad:  Full-Size Img  PowerPoint