Zhang Enhong, Cao Yunchang, Zhu Bin. Developing of beidou radiosonde system and analysis on its wind measuring performance. J Appl Meteor Sci, 2013, 24(4): 464-471.
Citation: Zhang Enhong, Cao Yunchang, Zhu Bin. Developing of beidou radiosonde system and analysis on its wind measuring performance. J Appl Meteor Sci, 2013, 24(4): 464-471.

Developing of Beidou Radiosonde System and Analysis on Its Wind Measuring Performance

  • Received Date: 2013-01-31
  • Rev Recd Date: 2013-06-12
  • Publish Date: 2013-08-31
  • As an important constituent of the integrated meteorological observation system, the upper air meteorological observations have extremely important effects on weather forecast, climate change research and other work, and it plays an irreplaceable benchmark function in atmospheric remote sensing observation authenticity verification and calibration of testing. The development of Beidou radiosonde and the ground receiving system is based on Beidou Satellite Navigation System with completely independent intellectual property rights, and the prototypes are assembled. By the end of 2012, Beidou Satellite Navigation System can provide preliminary service with 14 satellites in orbit, including 5 Geostationary Earth Orbit (GEO) satellites, 4 Medium Earth Orbit (MEO) satellites and 5 Inclined Geosynchronous Satellite Orbit (IGSO) satellites in 3 inclined orbits. On this basis, Beidou radiosonde is examined, and comparative analysis are carried out on its different patterns of wind measuring, i.e., single Beidou, single GPS and mixed mode. The results show that the wind measuring performance of Beidou and GPS radiosonde is quite close. The deviation of Beidou radiosonde compared to the GPS radiosonde is as follows: The standard deviation of the north velocity is 0.05 m·s-1, the average deviation is-0.05 m·s-1, the standard deviation of the east velocity is 0.03 m·s-1, the average deviation is-0.01 m·s-1, the height standard deviation is 6.88 m and the average deviation is 7.48 m. The PDOP value in single Beidou mode is large compared to GPS radiosonde and the accuracy of positioning is poor, because the current constellation is not fully deployed. Beidou radiosonde performance is relatively stable in the lower atmosphere, but a violent wave happens in the high level atmosphere, which means that the stability of the national dual-mode chip and module needs improving.
  • Fig. 1  Schematic diagram of Beidou Satellite Navigation System

    (a) the constellation of Beidou Satellite Navigation System after the deployment to improve[6],(b) the ground track of the current Beidou Satellite Navigation System[7]

    Fig. 2  The diagram of Beidou radiosonde structure (a) and the ground receiving system structure (b)

    Fig. 3  The trace comparison of Beidou radiosonde and GPS radiosonde

    Fig. 4  The change trend of the vertical location difference between Beidou radiosonde

    Fig. 5  The scatterplot of the horizontal positioning difference between Beidou radiosonde and GPS radiosonde

    Fig. 6  The speed comparison in the north (a) and east (b) directions between Beidou radiosonde and GPS radiosonde

    Fig. 7  The change trend of the difference of velocity measurements in north and east directions between Beidou radiosonde and GPS radiosonde

    Fig. 8  The change trend of the difference of velocity measurements in north and east directions between the single Beidou radiosonde and GPS radiosonde

    Fig. 9  The change trend of the difference of velocity measurements at specified level between Beidou radiosonde and GPS radiosonde

    Table  1  The performance index of CC50

    参数 指标
    水平位置精度 5 m
    垂直位置精度 10 m
    速度精度 0.1 m·s-1
    重捕获时间 ≤1 s
    平均热启动时间 1 s
    平均冷启动时间 37 s
    输入信号 GPS L1和BD2 B1
    通道数 并行双32通道
    定位输出速率 1 Hz
    通讯端口 两个串口双向,LV-TTL电平
    DownLoad: Download CSV

    Table  2  The performance index of Beidou radiosonde

    参数技术指标 范围
    探测距离 0~200 km
    探测高度 0~36 km
    温度测量范围 -90℃~50℃
    温度最大静态测量误差 0.2℃
    湿度测量范围 1%~100%(相对湿度)
    湿度最大静态测量误差 3%(相对湿度)
    气压测量范围5 hPa~1060 hPa(高度计算) 100 hPa~1060 hPa(传感器直接测量)
    气压最大测量误差 1 hPa
    风速测量范围 0~150 m·s-1
    风速最大测量误差 ±0.3 m·s-1
    风向测量范围 0°~360°
    风向最大测量误差 ±3°(风速分量大于3 m·s-1)
    发射机频率范围 401~406 MHz
    发射机发射功率 ≤23 dBm
    发射机发射谱宽 ≤20 kHz(-50 dBc)
    发射机频率稳定度 ≤20 kHz(温差≤100℃)
    天线频率范围 1567.75±9 MHz
    天线增益 >3 dBi
    天线极化方式 右旋极化
    DownLoad: Download CSV

    Table  3  The comparison of three modules for the positioning precision in the static test

    模式 CEP50/m 水平标准差/m 高度标准差/m 速度标准差/(m·s-1) 平均PDOP
    GPS 2.11 2.67 5.49 0.02 1.80
    北斗 8.16 12.64 20.27 0.06 5.03
    北斗与GPS混合 2.10 2.66 5.93 0.02 1.40
      注:CEP50为圆概率误差。
    DownLoad: Download CSV
  • [1]
    Peter T M.Comparison of wind-profiler and radiosonde measurements in the tropoc.J Atmos Ocean Technol, 1993, 10(2):122-127.
    [2]
    Rust W D, Thomas C M, Stolzenburg M, et al.Test of a GPS radiosonde in thunderstorm electrical environments.J Atmos Ocean Technol, 1999, 16(5):550-560. doi:  10.1175/1520-0426(1999)016<0550:TOAGRI>2.0.CO;2
    [3]
    Saarnimo T.GPS the Global Windfinding Method. 10th Symposium on Meteorological Observations and Instrumentation, 1998:51-54.
    [4]
    李柏, 李伟.高空气象探测系统现状分析与未来发展.中国仪器仪表, 2009(6):19-23. http://www.cnki.com.cn/Article/CJFDTOTAL-NJGW201504052.htm
    [5]
    WMO气象仪器和观测方法指南 (第六版中译文). 世界气象组织, 1996: 224-284.
    [6]
    [7]
    [8]
    高太长, 吴维, 郝晓静, 等.无源北斗探空测风系统误差分析.解放军理工大学学报:自然科学版, 2009, 10(1):98-102. http://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200901017.htm
    [9]
    李柏, 李伟.阳江第八届国际探空系统比对试验综述.气象科技进展, 2011, 1(3):6-13. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201103004.htm
    [10]
    张国舫, 张玉存.GPS探空仪两种测风计算方法的比较.气象水文海洋仪器, 2009(3):11-14. http://www.cnki.com.cn/Article/CJFDTOTAL-QXSW200903004.htm
    [11]
    王缅, 李伟, 陈永清, 等.L波段探空系统高空风平滑计算方法探讨.气象, 2011, 37(1):85-91. doi:  10.7519/j.issn.1000-0526.2011.01.010
    [12]
    李伟, 赵培涛, 郭启云, 等.国产GPS探空仪国际比对试验结果.应用气象学报, 2011, 22(4):453-462. doi:  10.11898/1001-7313.20110408
    [13]
    Nash J, Oakley T, Vömel H, et al.WMO Intercomparison of High Quality Radiosonde Syst.2010.
    [14]
    张玉存, 赵炜.用矢量平均法计算空中风连续变量的方法.军事气象水文, 2006(5):7-11.
    [15]
    姚雯, 马颖, 黄炳勋, 等.利用GPS定位资料分析L波段雷达测风性能.应用气象学报, 2009, 20(2):195-202. doi:  10.11898/1001-7313.20090209
    [16]
    姚雯, 马颖, 徐文静.L波段电子探空仪相对湿度误差研究及其应用.应用气象学报, 2008, 19(3):356-361. doi:  10.11898/1001-7313.20080312
    [17]
    颜晓露, 郑向东, 李蔚, 等.两种探空仪观测湿度垂直分布及其应用比较.应用气象学报, 2012, 23(4):433-440. doi:  10.11898/1001-7313.20120406
    [18]
    梁军, 张胜军, 隋洪起, 等.大连地区大雾特征.应用气象学报, 2009, 20(1):28-35. doi:  10.11898/1001-7313.20090104
    [19]
    杨鑫春, 李征航, 吴云.北斗卫星导航系统的星座及XPL性能分析.测绘学报, 2011(5):68-72. http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB2011S1013.htm
    [20]
    GPS探空测风系统功能规格需求书. 北京: 中国气象局大气探测技术中心, 2007.
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(3)

    Article views (3569) PDF downloads(2048) Cited by()
    • Received : 2013-01-31
    • Accepted : 2013-06-12
    • Published : 2013-08-31

    /

    DownLoad:  Full-Size Img  PowerPoint