Wu Tongwen, Song Lianchun, Liu Xiangwen, et al. Progress in developing the short-range operational climate prediction system of China national climate center. J Appl Meteor Sci, 2013, 24(5): 533-543.
Citation: Wu Tongwen, Song Lianchun, Liu Xiangwen, et al. Progress in developing the short-range operational climate prediction system of China national climate center. J Appl Meteor Sci, 2013, 24(5): 533-543.

Progress in Developing the Short-range Operational Climate Prediction System of China National Climate Center

  • Received Date: 2013-04-08
  • Rev Recd Date: 2013-07-08
  • Publish Date: 2013-10-31
  • The progress in developing the second-generation short-range climate forecast system of National (or Beijing) Climate Center (NCC or BCC) is introduced, focusing on four items, i.e., the global ocean data assimilation system, the land data assimilation system, the monthly-scale dynamical extended-range forecast system (DERF), and the seasonal climate forecast system. With a better assimilation of temperature and salinity than the first-generation system, the second-generation ocean data assimilation system is now at the quasi-operational level. The land data assimilation system is still under development, but the multisource precipitation merging subsystem is now quasi-operational and can produce reanalysis of precipitation as a forcing to land system. The atmospheric general circulation model BCC_AGCM2.2 and the climate system model BCC_CSM1.1(m) are the main tools for the second-generation monthly-scale DERF and the second-generation seasonal prediction system, respectively. The former has entered quasi-operational use since middle August of 2012 and conducted four-member real-time forecast jobs and 80 hindcast jobs every day, and the latter will enter its quasi-operational stage by the end of 2013. A preliminary evaluation indicates that the second-generation system shows a certain capability in predicting the pentad, ten-day, monthly, seasonal and inter-annual climate variability. It exhibits a higher prediction skill, compared to the first-generation system, in terms of precipitation, surface air temperature, atmospheric circulation and El Ni o-Southern Oscillation, and so on. As shown by the hindcasts by two generations of DERF (i.e., DERF1.0 and DERF2.0) for the monthly mean surface air temperature in January and July, DERF2.0 shows overall higher prediction skill than DERF1.0, especially over the tropical Indian Ocean and Pacific and most mid-high latitude areas in the Northern Hemisphere in January, and most regions in global tropics and subtropics in July. Also, the 20-year hindcasts initialized in the end of February of each year by the two generations of seasonal climate prediction system indicate that, the second-generation system shows significant prediction skill of surface air temperature over most areas in spring, especially over the tropical Pacific, Atlantic and Indian Ocean. In contrast, the skills over most areas of the first-generation system are relative lower.
  • Fig. 1  Monthly-mean bias (a) and root mean square error (b) of FY-3B and MODIS LST data compared to GLDAS LST data from October 2010 to April 2011

    Fig. 2  Schematic structure of DERF2.0

    Fig. 3  Correlations between observation and prediction by DERF2.0 and DERF1.0 for temperature in January and July during 1983—2010 (the shaded denotes passing the test of 0.05 level)

    (a) prediction by DERF2.0 and observation in January, (b) prediction by DERF1.0 and observation in January, (c) prediction by DERF2.0 and observation in July, (d) prediction by DERF1.0 and observation in July

    Fig. 4  Distribution of temperature anomaly and precipitation anomaly percentage averaged during 3—4 November 2012 for predictions of 5-day, 3-day, and 1-day leading by DERF2.0 and observations

    (a) temperature prediction of 5-day leading, (b) precipitation prediction of 5-day leading, (c) temperature prediction of 3-day leading, (d) precipitation prediction of 3-day leading, (e) temperature prediction of 1-day lead, (f) precipitation prediction of 1-day leading, (g) temperature observation, (h) precipitation observation

    Fig. 5  Schematic structure of the second-generation seasonal climate forecast model system

    Fig. 6  Correlations between observation and prediction at the start of March by the first-generation and second-generation seasonal climate forecast model systems for temperature in spring and summer during 1991—2010 (a) prediction by the first-generation system and observation in spring, (b) prediction by the first-generation system and observation in summer, (c) prediction by the second-generation system and observation in spring, (d) prediction by the second-generation system and observation in summer

    Table  1  Spatial correlation between observation and prediction by the first-generation and second-generation seasonal climate forecast model systems for the climatological fields during 1991—2010

    变量 区域 春季 (3—5月) 夏季 (6—8月)
    BCC_CSM1.1(m) BCC_CM1.0 BCC_CSM1.1(m) BCC_CM1.0
    500 hPa位势高度 全球 0.997 0.960 0.998 0.990
    热带 0.930 0.680 0.970 0.930
    亚洲 0.998 0.980 0.989 0.968
    200 hPa纬向风 全球 0.950 0.770 0.96 0.900
    热带 0.940 0.740 0.960 0.920
    亚洲 0.987 0.500 0.970 0.780
    850 hPa纬向风 全球 0.960 0.920 0.950 0.880
    热带 0.870 0.740 0.900 0.800
    亚洲 0.850 0.670 0.850 0.500
    地面气温 全球 0.995 0.810 0.990 0.450
    热带 0.950 0.190 0.960 -0.230
    亚洲 0.990 0.830 0.970 0.660
    中国 0.980 0.620 0.970 0.330
    地面降水 全球 0.860 0.520 0.780 0.470
    热带 0.850 0.520 0.770 0.430
    亚洲 0.740 0.180 0.730 0.220
    中国 0.610 0.400 0.670 0.410
    DownLoad: Download CSV
  • [1]
    董敏, 陈嘉滨, 季仲贞, 等. 季节预测大气模式研制和应用进展//国家"九五"重中之重962908项目办公室. 短期气候预测业务动力模式的研制. 北京: 气象出版社, 2000: 63-69.
    [2]
    丁一汇, 刘一鸣, 宋永加, 等.我国短期气候动力预测模式系统的研究及试验.气候与环境研究, 2002, 7(2):236-246. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200202010.htm
    [3]
    丁一汇, 李清泉, 李维京, 等.中国业务动力季节预报的进展.气象学报, 2004, 62(5):598-612. doi:  10.11676/qxxb2004.059
    [4]
    李维京, 张培群, 李清泉, 等.动力气候模式预测系统业务化及其应用.应用气象学报, 2005, 16(增刊):1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2005S1000.htm
    [5]
    张培群, 李清泉, 王兰宁, 等.我国动力气候模式预测系统的研制及应用.科技导报, 2004, 7:17-20. doi:  10.3321/j.issn:1000-7857.2004.01.005
    [6]
    刘益民, 李维京, 张培群.国家气候中心全球海洋资料四维同化系统及其在热带太平洋的初步化结果分析.海洋学报, 2005, 27(1):27-35. http://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200501003.htm
    [7]
    陈丽娟, 李维京.月动力延伸预报产品的评估和解释应用.应用气象学报, 1999, 10(4):486-490. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=199904101&flag=1
    [8]
    范晓青, 李维京, 张培群.模式大气月尺度可预报性的对比研究.应用气象学报, 2003, 14(1):49-60. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030106&flag=1
    [9]
    艾孑兑秀, 孙林海, 宋文玲.NCC_CGCM产品对长江中下游夏季降水预报的释用.应用气象学报, 2010, 21(4):484-490. doi:  10.11898/1001-7313.20100412
    [10]
    张人禾, 朱江, 许建平, 等. ARGO大洋观测资料的同化及其在短期气候预测和海洋分析中的应用.大气科学, 2013, 37(2):411-424. doi:  10.3878/j.issn.1006-9895.2012.12308
    [11]
    Liu Y M, Zhang R H, Yin Y H, et al.The application of ARGO data to the global ocean data assimilation operational system of NCC.Acta Meteor Sinica, 2005, 19(3):355-365.
    [12]
    张人禾, 殷永红, 李清泉, 等.利用ARGO资料改进ENSO和我国夏季降水气候预测.应用气象学报, 2006, 17(5):538-547. doi:  10.11898/1001-7313.20060511
    [13]
    Zhou W, Cheng Y, Wang S, et al.Evaluation and preprocess of Chinese Fengyun-3A sea surface temperature experimental product for data assimilation.Atmospheric and Oceanic Science Letters, 2013, 6:128-132. doi:  10.1080/16742834.2013.11447068
    [14]
    肖贤俊, 何娜, 张祖强, 等.卫星遥感海表温度资料和高度计资料的变分同化.热带海洋学报, 2011(3):1-8. doi:  10.11978/j.issn.1009-5470.2011.03.001
    [15]
    刘向文, 李维京, 吴统文, 等.GTS的温盐资料在BCC_GODAS中的同化结果分析.应用气象学报, 2010, 21(5):558-569. doi:  10.11898/1001-7313.20100505
    [16]
    刘向文, 李维京, 吴统文, 等.从GTS获得的海洋温、盐资料在BCC海洋同化系统中的质量控制及同化结果初步分析.气象学报, 2011, 69(4):672-681. doi:  10.11676/qxxb2011.059
    [17]
    Wang D, Qin Y, Xiao X, et al.Preliminary results of a new global ocean reanalysis.Chinese Science Bulletin, 2012, 57(26):3509-3517. doi:  10.1007/s11434-012-5232-x
    [18]
    Wang D, Qin Y, Xiao X, et al.El Ni o and El Ni o Modoki variability based on a new ocean reanalysis.Ocean Dynamics, 2012, 62(9):1311-1322. doi:  10.1007/s10236-012-0566-0
    [19]
    Hubbard K G, You J.Sensitivity analysis of quality assurance using spatial regression approach:A case study of the maximum/minimum air temperature.J Atmos Ocean Technol, 2005, 22(10):1520-1530. doi:  10.1175/JTECH1790.1
    [20]
    Eischeid J K, Baker C B, Karl T, et al.The quality control of long-term climatological data using objective data analysis.Journal of Applied Meteorology and Climatology, 1995, 34 (12):2787-2795. doi:  10.1175/1520-0450(1995)034<2787:TQCOLT>2.0.CO;2
    [21]
    Kunkel K E, Karen A, Glen C, et al.An expanded digital daily database for climatic resources applications in the Midwestern United States.Bull Amer Meteor Soc, 1998, 79(7):1357-1366. doi:  10.1175/1520-0477(1998)079<1357:AEDDDF>2.0.CO;2
    [22]
    Graybeal D Y, de Gaetano A T, Eggleston K L.Complex quality assurance of historical hourly surface airways meteorological data.J Atmos Ocean Technol, 2004, 21(8):1156-1169. doi:  10.1175/1520-0426(2004)021<1156:CQAOHH>2.0.CO;2
    [23]
    Nie S, Luo Y, Li W P, et al.Quality control and analysis of global gauge-based daily precipitation dataset from 1980 to 2009.Advances in Climate Change Research, 2012, 3(1):45-53. doi:  10.3724/SP.J.1248.2012.00045
    [24]
    聂肃平, 朱江, 罗勇.不同模式误差方案在集合Kalman滤波土壤湿度同化中的比较试验.大气科学, 2010, 34(3):580-590. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201003011.htm
    [25]
    Nie S, Zhu J, Luo Y.Simultaneous estimation of land surface scheme states and parameters using the ensemble Kalman filter:identical twin experiments.Hydrol Earth Syst Sci, 2011, 15:2437-2457. doi:  10.5194/hess-15-2437-2011
    [26]
    Wu T W, Yu R C, Zhang F.A modified dynamic framework for atmospheric spectral model and its application.J Atmos Sci, 2008, 65:2235-2253. doi:  10.1175/2007JAS2514.1
    [27]
    Wu T W, Yu R C, Zhang F, et al.The Beijing Climate Center atmospheric general circulation model:Description and its performance for the present-day climate.Clim Dyn, 2010, 34:123-147. doi:  10.1007/s00382-008-0487-2
    [28]
    Wu T.A mass-flux cumulus parameterization scheme for large-scale models:Description and test with observations.Clim Dyn, 2012, 38:725-744. doi:  10.1007/s00382-011-0995-3
    [29]
    颉卫华, 吴统文.全球大气环流模式BCC_AGCM2.0.1对1998年夏季江淮流域强降水过程的回报试验研究.大气科学, 2010, 34:965-978. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201005010.htm
    [30]
    Jie W, Wu T, Wang J, et al.The improvement of 6-15 day precipitation forecasts using a time-lagged ensemble method.Adv Atmos Sci, doi:10.1007/s00376-013-3037-8.
    [31]
    Wu T, Li W, Ji J, et al.Global carbon budgets simulated by the Beijing climate center climate system model for the last century.J Geophys Res Atmos, 2013, 118, doi:10.1002/jgrd.50320.
    [32]
    辛晓歌, 吴统文, 张洁.BCC气候系统模式开展的CMIP5试验介绍.气候变化研究进展, 2012, 8(5):378-382. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201205012.htm
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(1)

    Article views (3695) PDF downloads(2603) Cited by()
    • Received : 2013-04-08
    • Accepted : 2013-07-08
    • Published : 2013-10-31

    /

    DownLoad:  Full-Size Img  PowerPoint