Hu Jinggao, Zhou Bing, Xu Haiming. Characteristics of multi-patterns of precipitation over the Yangtze-Huaihe Basins during meiyu season in recent 30 years. J Appl Meteor Sci, 2013, 24(5): 554-564.
Citation: Hu Jinggao, Zhou Bing, Xu Haiming. Characteristics of multi-patterns of precipitation over the Yangtze-Huaihe Basins during meiyu season in recent 30 years. J Appl Meteor Sci, 2013, 24(5): 554-564.

Characteristics of Multi-patterns of Precipitation over the Yangtze-Huaihe Basins During Meiyu Season in Recent 30 Years

  • Received Date: 2013-01-19
  • Rev Recd Date: 2013-06-03
  • Publish Date: 2013-10-31
  • The spatial patterns of precipitation during Meiyu season (June—July) over the Yangtze-Huaihe Basins are analyzed under different distributions of surface stations. 424 stations to the east of 110°E are chosen for the rotated empirical orthogonal function (REOF) analysis during 1979—2010. Then, three precipitation patterns are obtained, i.e., the south pattern (SP), the Yangtze pattern (YP), and the Yangtze-Huaihe pattern (YHP).On the inter-annual time scale, it's found that the out-of-phase relationship displays more remarkably between the rainfall of SP and YHP in recent 30 years. However, the precipitation of YP shows no significant relationship with that of SP and YHP, revealing as more independent precipitation pattern. In addition, the YP has the most climatological precipitation, and shows the largest variability. While on the inter-decadal time scale, the YP precipitation is identical with that of SP. Nevertheless, the precipitation of YHP exhibits out-of-phase relationship with the YP and SP, especially since the early 1990s. There are obvious inter-decadal changes in the early 1990s and early 2000s in all spatial precipitation patterns during Meiyu season. But different from the previous years, by 2010, the YP and SP precipitation has increased a little but the YHP precipitation has decreased, suggesting a new inter-decadal variation.The regression using ERA-Interim reanalysis data indicates that corresponding to the anomalous precipitation, the intensities and positions of sub-systems of East Asian summer monsoon circulations, such as the south Asia high (SAH), the western Pacific subtropical high (SH) and the subtropical upper jet stream (JS), have notable differences which also exist in the monsoon meridional circulations and water vapor transport flux. Specifically, when the YP precipitation is in the flood years, the intensities of the SAH and SH enhance apparently. When the YHP precipitation is strong, the SAH and JS locate east, meanwhile, the geopotential height over Aleutian Islands maintain positive anomalies. The positive phase of the East Asia-Pacific teleconnection pattern and the negative phase of the Eurasian teleconnection pattern make it difficult for the SH to shift northward and confine it to a southern position, which in turn enhance the SP rainfall remarkably. Additionally, it is found that the SH, the monsoon meridional circulations, together with the vertically integrated water vapor transport flux stay successively in northern places, accompanying by a northerly rainfall pattern. Further analyses on sea surface temperature (SST) present that the previous SST of the east Pacific Ocean of the equator shows significant relationship with the precipitation of YP and SP. The cool SST of the western Pacific warm pool and warm SST in Chinese coasts and the Kuroshio area restrain the precipitation in the SP. But there is no distinct correlation between the precipitation of YHP and the tropical SST in the prior period, which implies that the tropical SST plays no key role in the YHP precipitation since 1979.
  • Fig. 1  The spatial patterns in the Yangtze-Huaihe Basins obtained by REOF of precipitation during Meiyu season (June—July) of 90 stations in 1979—2010 (a) the distribution of 90 meteorological stations, (b) the second rotational loading vector, (c) the third rotational loading vector

    Fig. 2  The same as in Fig.1, but obtained by REOF of 424 stations (the solid line box indicates the traditional Meiyu area)

    (a) the distribution of meteorological stations, (b) the south pattern (SP), (c) the Yangtze River pattern (YP), (d) the Yangtze-Huaihe pattern (YHP)

    Fig. 3  Standardized time series of precipitation during Meiyu season in 1979—2010 of SP (a), YP (b) and YHP (c) (the dashed line shows 9-year moving average)

    Fig. 4  The geopotential height (contour, unit:gpm)(the shaded denotes passing the test of 0.05 level) and wind filed (only the wind vectors passing the test of 0.05 level are given, unit: m·s-1) regressed against precipitation during meiyu season in 1979—2010 at 200 hPa and 500 hPa

    (a)200 hPa, SP, (b)500 hPa, SP, (c)200 hPa, YP, (d)500 hPa, YP, (e)200 hPa, YHP, (f)500 hPa, YHP

    Fig. 5  The vertically integrated water vapor regressed against precipitation during Meiyu season in 1979—2010 (unit: kg·m-1·s-1, the vector of red color denotes passing the test of 0.05 level)

    (a) SP, (b) YP, (c) YHP

    Fig. 6  The same as in Fig.5, but for the top thermal radiation (isoline, unit: W·m-2) (the shaded denotes passing the test of 0.05 and 0.01 levels, respectively)

    Fig. 7  The same as in Fig.6, but for the cross section of meridion-height circulation (vector) averaged in 110°—130°E

    Fig. 8  The correlation coefficient between precipitation during Meiyu season and SST in 1979—2010 (the SST is averaged from January to March for YP, and averaged from February to May for SP and YHP)

    (a) SP, (b) YP, (c) YHP

    Table  1  The precipitation with its standard deviation of each pattern during Meiyu season

    型态 梅雨期月降水量/mm 标准差/mm
    1979—2010年 1961—2010年 1979—2010年 1961—2010年
    南部型 210.4 208.9 69.9 63.7
    长江型 226.1 210.6 73.9 74.7
    江淮型 185.3 177.2 64.0 60.4
    DownLoad: Download CSV

    Table  2  The correlation coefficient of precipitation between Meiyu patterns

    型态 1979—2010年
    (R0.05=0.349)
    1961—2010年
    (R0.05=0.279)
    南部型与江淮型 -0.418 -0.275
    长江型与南部型 0.132 0.188
    江淮型与长江型 0.224 0.207
    DownLoad: Download CSV
  • [1]
    朱乾根, 林锦瑞, 寿绍文, 等.天气学原理和方法.北京:气象出版社, 1992:495-496.
    [2]
    Tao S Y, Chen L X.A Review of Recent Research on the East Asian Summer Monsoon in China//Chang C P, Krishnamurti T N.Monsoon Meteorology.Oxford:Oxford University Press, 1987:60-92.
    [3]
    Ding Y H.Summer monsoon rainfalls in China.J Meteor Soc Japan, 1992, 70:373-396. doi:  10.2151/jmsj1965.70.1B_373
    [4]
    陈隆勋, 张博, 张瑛.东亚季风研究的进展.应用气象学报, 2006, 17(6):711-724. doi:  10.11898/1001-7313.20060609
    [5]
    Ninomiya K, Murakami T.The Early Summer Rainy Season (Baiu) over Japan//Chang C P, Krishnamurti T N.Monsoon Meteorology.Oxford:Oxford University Press, 1987:93-121.
    [6]
    Oh J H, Kwon W T, Ryoo S B.Review of the researches on changma and future observational study (KORMEX).Adv Atmos Sci, 1997, 14:207-222. doi:  10.1007/s00376-997-0020-2
    [7]
    竺夏英, 何金海, 吴志伟.江淮梅雨期降水经向非均匀分布及异常年特征分析.科学通报, 2007, 52(8):951-957. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200708016.htm
    [8]
    司东, 丁一汇, 柳艳菊.中国梅雨雨带年代际尺度上的北移及其原因.科学通报, 2010, 55(1):68-73. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201001016.htm
    [9]
    牛若芸, 苏爱芳, 马杰, 等.典型南涝 (旱) 北旱 (涝) 梅雨大气环流特征差异及动力诊断分析.大气科学, 2011, 35(1):95-104. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201101009.htm
    [10]
    魏凤英.现代气候统计诊断与预测技术.北京:气象出版社, 2007:117-124.
    [11]
    宗海锋, 张庆云, 陈烈庭.梅雨期中国东部降水的时空变化及其与大气环流、海温的关系.大气科学, 2006, 30(6):1189-1197. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200606012.htm
    [12]
    闵屾, 钱永甫.江淮梅雨分区特征的比较研究.应用气象学报, 2008, 19(1):19-27. doi:  10.11898/1001-7313.20080104
    [13]
    胡娅敏, 丁一汇, 廖菲.近52年江淮梅雨的降水分型.气象学报, 2010, 68(2):235-247. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201002010.htm
    [14]
    赵翠光, 李泽椿.华北夏季降水异常的客观分区及时间变化特征.应用气象学报, 2012, 23(6):641-649. doi:  10.11898/1001-7313.20120601
    [15]
    陶诗言, 朱文妹, 赵卫.论梅雨的年际变异.大气科学, 1988, 12(特刊):13-21.
    [16]
    符淙斌, 腾星林.ENSO与中国夏季气候的关系.大气科学, 1988, 12(特刊):133-141. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200702000.htm
    [17]
    黄荣辉, 孙凤英.热带西太平洋暖池的热状态及其上空的对流活动对东亚夏季气候异常的影响.大气科学, 1994, 18(2):141-151. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199402001.htm
    [18]
    徐海明, 何金海.江淮入梅前后大气环流的演变特征和西太平洋副高北跳西伸的可能机制.应用气象学报, 2001, 12(2):150-158. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010221&flag=1
    [19]
    徐海明, 何金海, 董敏.江淮入梅的年际变化及其与北大西洋涛动和海温异常的联系.气象学报, 2001, 59(6):694-706. doi:  10.11676/qxxb2001.073
    [20]
    毛文书, 巩远发, 彭骏, 等.长江中下游梅雨与北太平洋大气热源诊断分析.应用气象学报, 2009, 20(2):240-246. doi:  10.11898/1001-7313.20090214
    [21]
    邓汗青, 罗勇.近50年长江中下游春季和梅雨期降水变化特征.应用气象学报, 2013, 24(1):23-31. doi:  10.11898/1001-7313.20130103
    [22]
    Latif M, Barnett T P.Decadal climate variability over the North Pacific and North America:Dynamics and predictability.J Climate, 1996, 9:2407-2423. doi:  10.1175/1520-0442(1996)009<2407:DCVOTN>2.0.CO;2
    [23]
    Wang B.Interdecadal changes in El Ni o onset in the last four decades.J Climate, 1995, 8:267-285. doi:  10.1175/1520-0442(1995)008<0267:ICIENO>2.0.CO;2
    [24]
    Wang H J.The weakening of the Asian monsoon circulation after the end of 1970s.Adv Atmos Sci, 2001, 18:376-386. doi:  10.1007/BF02919316
    [25]
    Xue F.Interannual to interdecadal variation of East Asian Summer Monsoon and its association with the global atmospheric circulation and sea surface temperature.Adv Atmos Sci, 2001, 18:567-575. doi:  10.1007/s00376-001-0045-x
    [26]
    Trenberth K E.Recent observed interdecadal climate changes in the Northern Hemisphere.Bull Amer Meteor Soc, 1990, 71:988-993. doi:  10.1175/1520-0477(1990)071<0988:ROICCI>2.0.CO;2
    [27]
    Ding Y H, Sun Y, Wang Z Y, et al.Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon.Part Ⅱ :Possible causes.Int J Climatol, 2009, 29:1926-1944.
    [28]
    Ding Y H, Wang Z Y, Sun Y.Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon.Part Ⅰ :Observed evidences.Int J Climatol, 2008, 28:1139-1161.
    [29]
    Rayner N A, Parker D E, Horton E B, et al.Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century.J Geophys Res, 2003, 108, doi:10.1029/2002JD002670.
    [30]
    Simmons A, Uppala S, Dee D, et al.ERA-Interim:New ECMWF reanalysis products from 1989 onwards.ECMWF Newsl, 2006, 110:26-35.
    [31]
    Dee D P, Uppala S M, Simmons A J, et al.The ERA-Interim reanalysis:Configuration and performance of the data assimilation system.Quart J Roy Meteor Soc, 2011, 137:553-597. doi:  10.1002/qj.v137.656
    [32]
    钱维宏, 朱江, 王永光, 等.江淮梅雨和赤道太平洋区域海温变化的关系.科学通报, 2009, 54(1):79-84. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200901016.htm
    [33]
    马音, 陈文, 王林.中国夏季淮河和江南梅雨期降水异常年际变化的气候背景及其比较.气象学报, 2011, 69(2):334-343. doi:  10.11676/qxxb2011.028
    [34]
    Wallace J M, Gutzler D S.Teleconnections in the geopotential height field during the Northern Hemisphere winter.Mon Wea Rev, 1981, 109:784-812. doi:  10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
    [35]
    Huang R H.The East Asia/Pacific pattern teleconnection of summer circulation and climate anomaly in East Asia.Acta Meteor Sinica, 1992, 6:25-37.
    [36]
    Huang R H, Sun F Y.Impacts of the tropical western Pacific on the East Asian summer monsoon.J Meteor Soc Japan, 1992, 70:243-256. doi:  10.2151/jmsj1965.70.1B_243
    [37]
    Zhang R, Sumi A, Kimoto M.Impact of El Ni o on the East Asian monsoon:A diagnostic study of the '86/87 and '91/92 events.J Meteor Soc Japan, 1996, 74:49-62. doi:  10.2151/jmsj1965.74.1_49
    [38]
    Wang B, Wu R, Fu X.Pacific-East Asian teleconnection:How does ENSO affect East Asian climate?J Climate, 2000, 13:1517-1536. doi:  10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
    [39]
    高辉.淮河夏季降水与赤道东太平洋海温对应关系的年代际变化.应用气象学报, 2006, 17(1):1-9. doi:  10.11898/1001-7313.20060101
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(2)

    Article views (3367) PDF downloads(1510) Cited by()
    • Received : 2013-01-19
    • Accepted : 2013-06-03
    • Published : 2013-10-31

    /

    DownLoad:  Full-Size Img  PowerPoint