Qin Zhinian, Hu Yamin, Chen Lijuan. The multi-timescale features for Guangxi summer precipitation and the related predictors. J Appl Meteor Sci, 2013, 24(5): 565-575.
Citation: Qin Zhinian, Hu Yamin, Chen Lijuan. The multi-timescale features for Guangxi summer precipitation and the related predictors. J Appl Meteor Sci, 2013, 24(5): 565-575.

The Multi-timescale Features for Guangxi Summer Precipitation and the Related Predictors

  • Received Date: 2012-12-06
  • Rev Recd Date: 2013-04-02
  • Publish Date: 2013-10-31
  • Based on NCEP/NACR reanalysis data and Guangxi summer precipitation (GSP) station data, using the correlation analysis, composite analysis, empirical orthogonal function (EOF), empirical mode decomposition (EMD), abrupt change test and the statistic significant test methods, GSP multi-timescale characteristics and their related circulation as well as the external forcing features are analyzed. According to the diagnostic analysis, the fitting and the prediction equation of GSP are proposed by the multivariate linear regression method.GSP is mainly influenced by the mid-latitude height field anomaly in Lake Baikal region, the subtropical high and monsoon trough (MonTr) in the subtropical region, the low level jet (LLJ) and upper level jet (ULJ) in the same season, as well as the sea surface temperature (SST) anomaly in the eastern of the South Indian Ocean in the pre-winter and pre-spring.The possible physical concept model for GSP is that, when MonTr, LLJ, and the easterly to the south of the subtropical high (ESTH) occur at 850 hPa wind field, the blocking high (BH) over Lake Baikal at 500 hPa potential height, as well as ULJ over South China at 200 hPa wind field are stronger (weaker) than normal, and the subtropical high ridge location is northward (southward) to its normal position, the rainfall is more. The influences of circulation may impact summer rainfall anomaly through the multi-timescale features.Using EMD method, there are 5 principle modes for the summer rainfall. The variance contributions from the first to the fourth intrinsic mode function (IMF1—IMF4) are 55%, 18%, 12% and 12%, respectively. The periods over the statistic significant test are quasi-2 years, 7.6 years, 12.7 years and 19 years. On the scale of quasi-2 years, the summer rainfall is affected by the corresponding IMF1 components of the MonTr, LLJ, ULJ, BH over Lake Baikal, SST anomaly in the east of the South Indian Ocean. The summer rainfall has high relationship with the other influenced indexes on the different time scales.Using IMF1—IMF4 components of circulation factors and the multivariate linear regression method, the summer precipitation equation is fitted. The results show that the multiple correlation coefficients reach 0.73 with the significant level over 0.05. The tests verify that the summer precipitation is really influenced by the multi-timescale components of different factors.Furthermore, based on the IMFs of SST anomaly in the east of southern Indian in winter, the prediction model of the summer precipitation is constructed by the multivariate linear regression method. The trends of the 6 independent sample tests are accord with that of the observation. This method provides an idea in the regional climate prediction based on the multi-timescale features of predictant and predictor.
  • Fig. 1  The correlation coefficients of Guangxi summer precipitation to 850 hPa wind field (a), 500 hPa geopotential height (b), 200 hPa wind field (c) and SST in February (d) (the shaded denotes passing the test of 0.05 level)

    Fig. 2  The difference between the rich rain period and the poor rain period in summer for 500 hPa geopotential height (unit:dagpm) (a), 850 hPa wind field (b), 200 hPa wind field (c) and SST in February (unit:℃)(the shaded denotes passing the test of 0.05 level)

    Fig. 3  The circulation and SST anomaly fields between the rich rain year and the poor rain year for 500 hPa geopotential height (unit: gpm) (a), 850 hPa wind field (b), 200 hPa wind field (c), SST in February (unit:℃) (d) (the shaded denotes passing the test of 0.05 level)

    Fig. 4  The comparisons between IMF1(a), IMF2(b), IMF3(c), IMF4(d) of Guangxi summer precipitation (solid line) and their prominent index (dashed line)

    Fig. 5  The fitness value from the linear regression of IMF components from different indexes (dashed line) and Guangxi summer rainfall (solid line)

    Fig. 6  The fitness value from the linear regression of SST IMF components (dashed line) and Guangxi summer rainfall (solid line)

    Table  1  The correlation coefficients between each index and Guangxi summer precipitation

    指数 原始资料 年际相关 年代际相关
    季风槽指数 0.31 0.55 0.35
    低空急流指数 0.41 0.49 0.54
    副高南侧偏东气流指数 -0.31 -0.24 -0.24
    贝加尔湖阻塞高压强度指数 0.30 0.21 0.15
    西太平洋副热带高压脊线指数 -0.14 -0.52 -0.47
    高空急流指数 -0.41 -0.53 -0.67
    海温指数 -0.34 -0.24 -0.34
    注:若相关系数绝对值大于0.25,表明该相关超过0.05显著性水平。下同。
    DownLoad: Download CSV

    Table  2  The correlation coefficients between IMF components of each index and that of Guangxi summer precipitation

    指数 IMF1 IMF2 IMF3 IMF4
    季风槽指数 0.33 0.50
    低空急流指数 0.49 0.57
    副高南侧偏东气流指数 -0.32 -0.49 -0.47
    贝加尔湖阻塞高压强度指数 0.34
    西太平洋副热带高压脊线指数 0.33
    高空急流指数 -0.25 -0.39 -0.77
    海温指数 -0.28 -0.49 -0.43
    DownLoad: Download CSV
  • [1]
    覃志年, 覃峥嵘.广西2002年夏季多雨成因分析.广西气象, 2002(3):28-29. http://www.cnki.com.cn/Article/CJFDTOTAL-GXQX200203008.htm
    [2]
    吴洪宝, 王盘兴, 林开平.广西夏季降水量潜在可预报性估计.应用气象学报, 2005, 16(4):445-452. doi:  10.11898/1001-7313.20050404
    [3]
    覃志年, 金龙, 何慧.广西夏季异常降水量的前馈网络预报模型.灾害学, 2005, 20(4):23-28. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU200504004.htm
    [4]
    周文志.蒋丽娟.吴松/广西夏季旱涝分布规律及同期500 hPa环流特征.自然灾害学报, 2009, 18(4):132-137. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200904022.htm
    [5]
    玄兆燕, 杨公训.EMD在地面气温预测中的应用.微计算机信息, 2008, 24(7):516-525. http://www.cnki.com.cn/Article/CJFDTOTAL-WJSJ200807099.htm
    [6]
    侯威, 封国林, 董文杰, 等.利用排列熵检测近40年华北地区气温突变的研究.物理学报, 2006, 55(5):2663-2668. doi:  10.7498/aps.55.2663
    [7]
    林振山, 汪曙光.近四百年北半球气温变化的分析:EMD方法的应用.热带气象学报, 2004, 20(1):90-96. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200401009.htm
    [8]
    王兵, 李晓东.基于EEMD分解的欧洲温度序列的多尺度分析.北京大学学报:自然科学版, 2011, 47(4):627-635. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201104010.htm
    [9]
    杨周, 林振山.北半球过去2000年气温变化的多尺度分析.地理科学, 2010, 30(2):295-299. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201002023.htm
    [10]
    秦旭, 张讲社, 延晓冬.基于改进的EMD的运城市持续极端气温的初步分析.大气科学学报, 2009, 32(5):645-651. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200905006.htm
    [11]
    孙娴, 林振山.经验模态分解下中国气温变化趋势的区域特征.地理学报, 2007, 62(11):1132-1141. doi:  10.3321/j.issn:0375-5444.2007.11.002
    [12]
    申倩倩, 束炯, 王行恒.上海地区近136年气温和降水量变化的多尺度分析.自然资源学报, 2011, 26(4):644-654. doi:  10.11849/zrzyxb.2011.04.010
    [13]
    McMahon T A, Kiem A S, Peel M C, et al.A new approach to stochastically generating six-monthly rainfall sequence based on empirical mode decomposition.J Hydrometeoro, 2008, 9(6):1377-1389. doi:  10.1175/2008JHM991.1
    [14]
    刘莉红, 翟盘茂, 郑祖光.中国北方夏半年最长连续无降水日数的变化特征.气象学报, 2008, 66(3):474-477. doi:  10.11676/qxxb2008.044
    [15]
    王兆礼, 覃杰香, 陈晓宏.东江流域枯水期最长连续无降水日数的变化特征.地理研究, 2011, 30(9):1693-1701. http://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201109012.htm
    [16]
    刘莉红, 郑祖光, 琚建华, 等.夏季副热带大气系统的多尺度振荡分析.高原气象, 2010, 29(1):115-127. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201001015.htm
    [17]
    Love B S, Matthews A J, Janacek G J.Real-time extraction of the Madden-Julian oscillation using empirical mode decomposition and statistical forecasting with a VARMA model.J Climate, 2008, 21(20):5318-5335. doi:  10.1175/2008JCLI1977.1
    [18]
    顾小丽, 李培良, 谭海涛, 等.基于RBF神经网络的EMD方法在海平面分析中的应用.海洋与湖泊, 2009, 40(5):532-539. http://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ200905002.htm
    [19]
    卢晓亭, 孙勇, 笪良龙, 等.基于EMD的BP神经网络海水温度时间序列预测研究.海洋技术, 2009, 28(3):79-82. http://www.cnki.com.cn/Article/CJFDTOTAL-HYJS200903023.htm
    [20]
    王勤, 陈显尧, 王秀红.德雷克海峡上层海洋温度的年代际变化.海洋科学进展, 2009, 27(4):426-433. http://www.cnki.com.cn/Article/CJFDTOTAL-HBHH200904004.htm
    [21]
    杜建丽, 林振山, 张真真.基于EMD的我国受旱面积波动的多时间尺度的分析.干旱区资源与环境, 2009, 23(5):90-93. http://www.cnki.com.cn/Article/CJFDTOTAL-GHZH200905017.htm
    [22]
    张明阳, 王克林, 刘会玉, 等.基于EMD的洪涝灾害成灾面积波动的多时间尺度分析——以湖南省为例.中国生态农业学报, 2007, 15(1):131-134. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200701034.htm
    [23]
    万仕全, 封国林, 周国华, 等.基于EMD方法的观测数据信息提取与预测研究.气象学报, 2005, 63(4):516-525. doi:  10.11676/qxxb2005.051
    [24]
    邹明玮. 基于非线性时间序列分析方法的非线性系统特性研究. 扬州: 扬州大学, 2007.
    [25]
    玄兆燕, 杨公训.经验模态分解法在大气时间序列预测中的应用.自动化学报, 2008(1):97-101. http://www.cnki.com.cn/Article/CJFDTOTAL-MOTO200801016.htm
    [26]
    毕硕本, 陈譞, 覃志年, 等.基于EMD和集合预报技术的气候预测方法.热带气象学报, 2012, 28(2):283-288. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201202019.htm
    [27]
    Kalnay E, Kanamitsu M, Kistler R, et al.The NCEP/NCAR 40-year reanalysis project.Bull Amer Meteor Soc, 1996, 77(3):437-471. doi:  10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [28]
    刘芸芸, 李维京, 艾孑兑秀, 等.月尺度西太平洋副热带高压指数的重建与应用.应用气象学报, 2012, 23(4):414-423. doi:  10.11898/1001-7313.20120404
    [29]
    郑祖光, 刘莉红.经验模态分析与小波分析及其应用.北京:气象出版社, 2010.
    [30]
    胡娅敏, 丁一汇.江淮地区梅雨的新定义及其气候特征.大气科学, 2008, 32(1):101-112. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200801009.htm
    [31]
    况雪源, 黄梅丽, 林振敏, 等.广西前汛期降水年代际变化与南半球印度洋海温的关系.热带气象学报, 2008, 24(6):279-284. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200803013.htm
    [32]
    何慧, 张健, 黄莉.北半球冬季雪盖对南宁地区盛夏降水的影响.广西气象, 2002, 23(4):35-38. http://www.cnki.com.cn/Article/CJFDTOTAL-GXQX200204012.htm
    [33]
    陆日宇.华北汛期降水量变化中年代际和年际尺度的分离.大气科学, 2002, 26(3):611-623. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200205002.htm
    [34]
    陆日宇.华北汛期降水量年代际和年际变化之间的线性关系.科学通报, 2003, 48(7):718-722. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200307016.htm
    [35]
    曹杰, 黄荣辉, 谢应齐, 等.西太平洋副热带高压演变物理机制的研究.中国科学:D辑, 2002, 32:659-666. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200208005.htm
    [36]
    Huang Ronghui, Sun Fengying.Impact of the tropical western Pacific on the East Asian summer monsoon.J Meteor Soc Japan, 1992, 70(1):243-256.
    [37]
    魏凤英.现代气候统计诊断与预测技术.北京:气象出版社, 2007.
    [38]
    魏凤英.我国短期气候预测的物理基础及其预测思路.应用气象学报, 2011, 22(1):1-11. doi:  10.11898/1001-7313.20110101
    [39]
    张婷, 魏凤英, 韩雪.华南汛期降水与南半球关键系统低频演变特征.应用气象学报, 2011, 22(3):265-274. doi:  10.11898/1001-7313.20110302
    [40]
    陈丽娟, 李维京.月动力延伸预报产品的评估和解释应用.应用气象学报, 1999, 10(4):486-490. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=199904101&flag=1
    [41]
    顾伟宗, 陈丽娟, 张培群, 等.月动力延伸预报最优信息提取和对中国降水的降尺度应用.气象学报, 2009, 67(2):280-287. doi:  10.11676/qxxb2009.028
    [42]
    覃志年, 陈丽娟, 唐红玉, 等.月尺度动力模式产品解释应用系统及预测技巧.应用气象学报, 2010, 21(5):614-620. doi:  10.11898/1001-7313.20100511
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(2)

    Article views (2756) PDF downloads(1295) Cited by()
    • Received : 2012-12-06
    • Accepted : 2013-04-02
    • Published : 2013-10-31

    /

    DownLoad:  Full-Size Img  PowerPoint