先导水平偏离风机位置 | 雷击概率/% | |||||
1号扇叶 | 2号扇叶 | 3号扇叶 | 地面 | 其他 | 备注 (未击中1号扇叶的情况下, 1号扇叶上产生上行先导概率) |
|
正上方 | 100 | 0 | 0 | 0 | 0 | |
偏右200 m | 98 | 0 | 0 | 2 | 0 | |
偏右300 m | 41 | 2 | 0 | 54 | 3 | 100 |
偏右400 m | 26 | 2 | 0 | 72 | 0 | 100 |
偏右500 m | 4 | 0 | 0 | 96 | 0 | 62 |
Citation: | Li Dan, Zhang Yijun, Lü Weitao. Simulation and analysis of the relationship between the turbine blade condition and its lightning strike probability. J Appl Meteor Sci, 2013, 24(5): 585-594. |
Table 1 Different values of P varying with horizontal distance between the initial downward leader and the turbine
先导水平偏离风机位置 | 雷击概率/% | |||||
1号扇叶 | 2号扇叶 | 3号扇叶 | 地面 | 其他 | 备注 (未击中1号扇叶的情况下, 1号扇叶上产生上行先导概率) |
|
正上方 | 100 | 0 | 0 | 0 | 0 | |
偏右200 m | 98 | 0 | 0 | 2 | 0 | |
偏右300 m | 41 | 2 | 0 | 54 | 3 | 100 |
偏右400 m | 26 | 2 | 0 | 72 | 0 | 100 |
偏右500 m | 4 | 0 | 0 | 96 | 0 | 62 |
Table 2 Average value of the upward leader in different conditions
风力发电机转动角度/(°) | 上行先导平均长度/m | 高出平均值/% |
0 | 170 | -15.2 |
15 | 189 | -5.7 |
30 | 212 | 5.8 |
45 | 221 | 10.3 |
60 | 210 | 4.8 |
Table 3 Distribution of P and Ps considering different condition
风力发电机所处状态 | 下行梯级先导水平位置 | |||||||||
偏左500 m | 偏左300 m | 0 m | 偏右300 m | 偏右500 m | ||||||
P/% | Ps/% | P/% | Ps/% | P/% | Ps/% | P/% | Ps/% | P/% | Ps/% | |
基本状态1(0°) | 5.0 | 64.2 | 40.0 | 95.0 | 100.0 | 100.0 | 41.0 | 94.9 | 4.0 | 65.2 |
基本状态2(15°) | 3.0 | 61.9 | 41.0 | 96.6 | 100.0 | 100.0 | 42.0 | 93.1 | 7.0 | 54.0 |
基本状态3(30°) | 4.0 | 62.5 | 39.0 | 93.4 | 99.0 | 100.0 | 43.0 | 95.2 | 8.0 | 57.6 |
基本状态4(45°) | 3.0 | 65.0 | 39.0 | 95.1 | 100.0 | 100.0 | 46.0 | 96.3 | 15.0 | 68.2 |
基本状态5(60°) | 4.0 | 67.0 | 35.0 | 95.4 | 99.0 | 100.0 | 38.0 | 96.8 | 3.0 | 64.95 |
注:P为雷击概率;Ps为未击中扇叶时,扇叶上产生上行正先导的概率。 |
[1] |
Rodrigues R B, Mendes V M F, Catalao J P S, et al.An investigation over the lightning location system in Portugal for wind turbine protection development.IEEE Transactions on Power Delivery, 2010, 25(2):870-875. doi: 10.1109/TPWRD.2009.2037325
|
[2] |
Rodrigues R B, Mendes V M F, Catalao J P S, et al.Analysis of the thunderstorm activity in Portugal for its application in the lightning protection of wind turbines.IEEE Latin America Transactions, 2009, 7(5):519-526. doi: 10.1109/TLA.2009.5361188
|
[3] |
Sarajcev P.Assessment of Lightning Stroke Incidence to Modern Wind Turbines.2010 International Conference on Telecommunications and Computer Networks (SoftCOM), 2010:97-101. https://www.researchgate.net/profile/Petar_Sarajcev/publication/224190043_Assessment_of_lightning_stroke_incidence_to_modern_wind_turbines/links/0046351adf05355344000000.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
|
[4] |
Wang D, Takagi N, Watanabe T, et al.Observed Characteristics of the Lightning Striking on a Windmill and Its Lightning-Protection Tower.Proceedings of 29th International Conference on Lightning Protection (ICLP), 2008.
|
[5] |
Rachidi F, Rubinstein M, Smorgonskiy A.Lightning protection of large wind-turbine blades.Green Energy and Technology, 2012:227-241.
|
[6] |
Yamamoto K, Yanagawa S, Yamabuki K, et al.Analytical surveys of transient and frequency-dependent grounding characteristics of a wind turbine generator system on the basis of field tests.IEEE Transactions on Power Delivery, 2010, 25(4):3035-3043. doi: 10.1109/TPWRD.2010.2043748
|
[7] |
Madsen S F, Larsen F M, Hansen L B, et al.Breakdown Tests of Glass Fibre Reinforced Polymers (GFRP) as Part of Improved Lightning Protection of Wind Turbine Blades.Conference Record of 2004 IEEE International Symposium on Electrical Insulation, 2004:484-491. http://orbit.dtu.dk/files/4171667/Madsen.pdf
|
[8] |
Manikandan P, Rajamani M P E, Subburaj D P, et al.Design and Analysis of Grounding Systems for Wind Turbines Using Finite Element Method.2011 International Conference on Emerging Trends in Electrical and Computer Technology (ICETECT), 2011:148-153. https://www.researchgate.net/profile/Venkatkumar_D/publication/251998953_Design_and_analysis_of_grounding_systems_for_wind_turbines_using_Finite_element_method/links/5615e7da08ae983c1b4238df.pdf
|
[9] |
Rodrigues R B, Mendes V M F, Catalao J P S.Direct Lightning Surge Analysis in Wind Turbines Using Electromagnetic Transients Computer Program.International Conference on Computer as a tool (EUROCON), 2011:1-4. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000005929181
|
[10] |
Glushakow B.Effective lightning protection for wind turbine generators.IEEE Transactions on Energy Conversion, 2007, 22(1):214-222. doi: 10.1109/TEC.2006.889622
|
[11] |
Rachidi F, Rubinstein M, Montanya J, et al.A review of current issues in lightning protection of new-generation wind-turbine blades.IEEE Transactions on Industrial Electronics, 2008, 55(6):2489-2496. doi: 10.1109/TIE.2007.896443
|
[12] |
Ametani A, Yamamato K.A Study of Transient Magnetic Fields in a Wind turbine Nacelle.Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), 2010:1201-1204. https://www.researchgate.net/publication/251927747_A_study_of_transient_magnetic_fields_in_a_wind_turbine_nacelle
|
[13] |
Yanagawa S, Natsuno D, Yamamoto K.A Measurement of Transient Grounding Characteristics of a Wind Turbine Generator System and Its Considerations.7th Asia-Pacific International Conference on Lightning (APL), 2011:401-404. https://www.researchgate.net/publication/254013293_A_measurement_of_transient_grounding_characteristics_of_a_wind_turbine_generator_system_and_its_considerations
|
[14] |
Elmghairbi A, Ahmeda M, Harid N.A Technique to Increase the Effective Length of Horizontal Earth Electrodes and Its Application to a Practical Earth Electrode System.7th Asia-Pacific International Conference on Lightning (APL), 2011:690-693.
|
[15] |
Peesapati V, Cotton I, Sorensen T, et al.Lightning protection of wind turbines-a comparison of measured data with required protection levels.Renewable Power Generation, IET, 2011, 5(1):48-57. doi: 10.1049/iet-rpg.2008.0107
|
[16] |
Ahmed M R, Ishii M.Electromagnetic Analysis of Lightning Surge Response of Interconnected Wind Turbine Grounding System.International Symposium on Lightning Protection (XI SIPDA), 2011:226-231. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000006088443
|
[17] |
Zoro R, Purwadi A.The Use of Wind Turbine Structure for Lightning Protection System.International Conference on Electrical Engineering and Information (ICEEI), 2011:1-6. https://www.researchgate.net/publication/221013703_The_use_of_wind_turbine_structure_for_lightning_protection_system
|
[18] |
Sakurano H, Hashimoto M, Nakamura K.Observation of Winter Lightning Striking a Wind Power Generation Tower and a Lightning Tower.28th International Conference on Lightning Protection, 2006:1522-1526.
|
[19] |
Nakamura K, Sakurano H.Observation of Winter Lightning Striking a Wind Power Generation Tower (a Lightning Tower) and Its Statistical Analysis.29th International Conference on Lightning Protection, 2008:1-4.
|
[20] |
洪华芳, 周歧斌, 边晓燕.风力发电机叶片的雷击损伤与雷电保护.华东电力, 2009, 37(10):1778-1781. http://www.cnki.com.cn/Article/CJFDTOTAL-HDDL200910048.htm
|
[21] |
Radicevic B M, Savic M S. Experimental research on the influence of wind turbine blade rotation on the characteristics of atmospheric discharges.IEEE Transactions on Energy Conversion, 2011, 26(4):1181-1190. doi: 10.1109/TEC.2011.2162240
|
[22] |
Romero D, Montany J, Candela A.Behaviour of the Wind-Turbines under Lightning Strikes Including Nonlinear Grounding System.Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ), 2004.
|
[23] |
Rodrigues R B, Mendes V M F, Catalao J P S.Electromagnetic Transients Due to Lightning Strikes on Wind Turbines:A Case Study.MELECON 2010—2010 15th IEEE Mediterranean Electrotechnical Conference, 2010:1417-1422. https://www.researchgate.net/publication/224142750_Electromagnetic_Transients_due_to_Lightning_Strikes_on_Wind_Turbines_A_Case_Study
|
[24] |
Paolone M, Napolitano F, Borghetti A, et al.Models of Wind-Turbine Main Shaft Bearings for the Development of Specific Lightning Protection Systems.2007 IEEE Lausanne Power Tech, 2007:783-789. http://www.academia.edu/7580095/Models_of_Wind-Turbine_Main-Shaft_Bearings_for_the_Development_of_Specific_Lightning_Protection_Systems
|
[25] |
王晓辉, 张小青.风电机组塔体的雷电暂态计算模型.系统仿真学报, 2009, 21(16):4998-5001. http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200916021.htm
|
[26] |
Peesapati V, Cotton I. Lightning Protection of Wind Turbines-a Comparison of Real Lightning Strike Data and Finite Element Lightning Attachment Analysis.International Conference on Sustainable Power Generation and Supply, 2009:1-8.
|
[27] |
任晓毓, 张义军, 吕伟涛, 等.闪电先导随机模式的建立与应用.应用气象学报, 2011, 22(2):194-202. doi: 10.11898/1001-7313.20110208
|
[28] |
任晓毓, 张义军, 吕伟涛, 等.雷击建筑物的先导连接过程模拟.应用气象学报, 2010, 21(4):450-457. doi: 10.11898/1001-7313.20100408
|
[29] |
张义军, 吕伟涛, 郑栋, 等.负地闪先导-回击过程的光学观测和分析.高电压技术, 2008, 34(10):2022-2029. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200810002.htm
|
[30] |
余晔, 郄秀书, 袁铁.雷暴云下地闪先导通道中的电荷分布.高原气象, 2002, 21(4):375-380. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200204005.htm
|
[31] |
郑栋, 张义军, 吕伟涛, 等.先导-回击模型与人工触发闪电特征参数计算.中国电机工程学报, 2006, 26(23):151-157. doi: 10.3321/j.issn:0258-8013.2006.23.027
|
[32] |
李俊, 张义军, 吕伟涛, 等.一次多回击自然闪电的高速摄像观测.应用气象学报, 2008, 19(4):401-411. doi: 10.11898/1001-7313.20080403
|
[33] |
李俊, 吕伟涛, 张义军, 等.一次多分叉多接地的空中触发闪电过程.应用气象学报, 2010, 21(1):95-100. doi: 10.11898/1001-7313.20100113
|
[34] |
张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi: 10.11898/1001-7313.20060619
|
[35] |
杨耀, 孙杰, 陈徐, 等.利用Matlab研究尖端导体附近的电场特征及其应用.信息通信, 2011(5):7-8. http://www.cnki.com.cn/Article/CJFDTOTAL-HBYD201105006.htm
|