Li Dan, Zhang Yijun, Lü Weitao. Simulation and analysis of the relationship between the turbine blade condition and its lightning strike probability. J Appl Meteor Sci, 2013, 24(5): 585-594.
Citation: Li Dan, Zhang Yijun, Lü Weitao. Simulation and analysis of the relationship between the turbine blade condition and its lightning strike probability. J Appl Meteor Sci, 2013, 24(5): 585-594.

Simulation and Analysis of the Relationship Between the Turbine Blade Condition and Its Lightning Strike Probability

  • Received Date: 2012-09-08
  • Rev Recd Date: 2013-07-11
  • Publish Date: 2013-10-31
  • To study the interaction between the lightning leader and the wind turbine, a 2-dimension random model of lightning leader is used to simulate and analyze the cases of lightning flash striking the wind turbine. Random simulation results demonstrate that as the horizontal distance between the initial downward leader and the turbine increases, the probability of the turbine to be stricken by lightning decreases instead, and even declines to about 4% when the distance is around 500 meters. The lightning strike points mostly are the turbine blades and there is some distinction in the striking character when the turbine is under different conditions.Here it is supposed that the wind turbine is relatively still because the rotation speed of the blade can be ignored compared with the speed at an order about 105 m/s in which the downward stepped leader develops. For simplicity, the blade in the first quadrant is named as No.1 blade and the other two as No.2 and No.3 blade in the clockwise direction. Then all possible turbine states are divided into five basic ones, i.e., turbine state 1—5 when the inclination angle of the No.1 blade is 0°, 15°, 30°, 45° and 60°, respectively. When the relative angle between the No.1 blade of the turbine and the vertical frame is 45°, the upward leader initiated from the turbine blade under the influence of the downward stepped leader has an obvious longer length which reaches 221 meters, nearly 10.3% higher than the average value of all the five basic situations. Due to the randomness of the occurrence that a turbine is stricken by lightning, incidences considering all important factors have been simulated such as the turbine condition and the horizontal distance between the downward initial leader and the turbine.To study and analyze the natural lightning strike probability of the blades under different conditions, the distance value which can vary a lot is hypothesized to be only 0—500 meters. When the inclination angle of the No.1 blade is 15°—45°, the turbine will bear a little higher risk to be stricken by lightning if the horizontal distance between the downward initial leader and the turbine is smaller than 300 meters. But the probability of the turbine to be stricken is relatively much higher if the distance becomes about 500 meters, obviously higher than that of turbines under any other conditions. It can be concluded that when the inclination angle of the No.1 blade is 15°—45°, the probability of the turbine to be stricken is relatively larger.
  • Fig. 1  The simulation model of lightning striking the wind turbine

    (a) schematic frame diagram of the 2-D random lightning leader model, (b) simplified model of the turbine

    Fig. 2  Schematic of leader random propagation

    Fig. 3  Basic conditions divided according to the turbine model

    Fig. 4  P of different possible striking points in the modeling space

    Fig. 5  The length of the upward leader initiated from the turbine in different condition

    Fig. 6  The length of upward leader as the downward leader propagates toward the ground

    Fig. 7  P of the turbine blade with different condition

    Fig. 8  Changing curves of the electric field intensity near the tip of the No.1 blade under different condition

    when the downward leader is 300 meters (a) or 500 meters (b) horizontal from the turbine

    Table  1  Different values of P varying with horizontal distance between the initial downward leader and the turbine

    先导水平偏离风机位置 雷击概率/%
    1号扇叶 2号扇叶 3号扇叶 地面 其他 备注 (未击中1号扇叶的情况下,
    1号扇叶上产生上行先导概率)
    正上方 100 0 0 0 0
    偏右200 m 98 0 0 2 0
    偏右300 m 41 2 0 54 3 100
    偏右400 m 26 2 0 72 0 100
    偏右500 m 4 0 0 96 0 62
    DownLoad: Download CSV

    Table  2  Average value of the upward leader in different conditions

    风力发电机转动角度/(°) 上行先导平均长度/m 高出平均值/%
    0 170 -15.2
    15 189 -5.7
    30 212 5.8
    45 221 10.3
    60 210 4.8
    DownLoad: Download CSV

    Table  3  Distribution of P and Ps considering different condition

    风力发电机所处状态 下行梯级先导水平位置
    偏左500 m 偏左300 m 0 m 偏右300 m 偏右500 m
    P/% Ps/% P/% Ps/% P/% Ps/% P/% Ps/% P/% Ps/%
    基本状态1(0°) 5.0 64.2 40.0 95.0 100.0 100.0 41.0 94.9 4.0 65.2
    基本状态2(15°) 3.0 61.9 41.0 96.6 100.0 100.0 42.0 93.1 7.0 54.0
    基本状态3(30°) 4.0 62.5 39.0 93.4 99.0 100.0 43.0 95.2 8.0 57.6
    基本状态4(45°) 3.0 65.0 39.0 95.1 100.0 100.0 46.0 96.3 15.0 68.2
    基本状态5(60°) 4.0 67.0 35.0 95.4 99.0 100.0 38.0 96.8 3.0 64.95
    注:P为雷击概率;Ps为未击中扇叶时,扇叶上产生上行正先导的概率。
    DownLoad: Download CSV
  • [1]
    Rodrigues R B, Mendes V M F, Catalao J P S, et al.An investigation over the lightning location system in Portugal for wind turbine protection development.IEEE Transactions on Power Delivery, 2010, 25(2):870-875. doi:  10.1109/TPWRD.2009.2037325
    [2]
    Rodrigues R B, Mendes V M F, Catalao J P S, et al.Analysis of the thunderstorm activity in Portugal for its application in the lightning protection of wind turbines.IEEE Latin America Transactions, 2009, 7(5):519-526. doi:  10.1109/TLA.2009.5361188
    [3]
    Sarajcev P.Assessment of Lightning Stroke Incidence to Modern Wind Turbines.2010 International Conference on Telecommunications and Computer Networks (SoftCOM), 2010:97-101. https://www.researchgate.net/profile/Petar_Sarajcev/publication/224190043_Assessment_of_lightning_stroke_incidence_to_modern_wind_turbines/links/0046351adf05355344000000.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
    [4]
    Wang D, Takagi N, Watanabe T, et al.Observed Characteristics of the Lightning Striking on a Windmill and Its Lightning-Protection Tower.Proceedings of 29th International Conference on Lightning Protection (ICLP), 2008.
    [5]
    Rachidi F, Rubinstein M, Smorgonskiy A.Lightning protection of large wind-turbine blades.Green Energy and Technology, 2012:227-241.
    [6]
    Yamamoto K, Yanagawa S, Yamabuki K, et al.Analytical surveys of transient and frequency-dependent grounding characteristics of a wind turbine generator system on the basis of field tests.IEEE Transactions on Power Delivery, 2010, 25(4):3035-3043. doi:  10.1109/TPWRD.2010.2043748
    [7]
    Madsen S F, Larsen F M, Hansen L B, et al.Breakdown Tests of Glass Fibre Reinforced Polymers (GFRP) as Part of Improved Lightning Protection of Wind Turbine Blades.Conference Record of 2004 IEEE International Symposium on Electrical Insulation, 2004:484-491. http://orbit.dtu.dk/files/4171667/Madsen.pdf
    [8]
    Manikandan P, Rajamani M P E, Subburaj D P, et al.Design and Analysis of Grounding Systems for Wind Turbines Using Finite Element Method.2011 International Conference on Emerging Trends in Electrical and Computer Technology (ICETECT), 2011:148-153. https://www.researchgate.net/profile/Venkatkumar_D/publication/251998953_Design_and_analysis_of_grounding_systems_for_wind_turbines_using_Finite_element_method/links/5615e7da08ae983c1b4238df.pdf
    [9]
    Rodrigues R B, Mendes V M F, Catalao J P S.Direct Lightning Surge Analysis in Wind Turbines Using Electromagnetic Transients Computer Program.International Conference on Computer as a tool (EUROCON), 2011:1-4. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000005929181
    [10]
    Glushakow B.Effective lightning protection for wind turbine generators.IEEE Transactions on Energy Conversion, 2007, 22(1):214-222. doi:  10.1109/TEC.2006.889622
    [11]
    Rachidi F, Rubinstein M, Montanya J, et al.A review of current issues in lightning protection of new-generation wind-turbine blades.IEEE Transactions on Industrial Electronics, 2008, 55(6):2489-2496. doi:  10.1109/TIE.2007.896443
    [12]
    Ametani A, Yamamato K.A Study of Transient Magnetic Fields in a Wind turbine Nacelle.Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), 2010:1201-1204. https://www.researchgate.net/publication/251927747_A_study_of_transient_magnetic_fields_in_a_wind_turbine_nacelle
    [13]
    Yanagawa S, Natsuno D, Yamamoto K.A Measurement of Transient Grounding Characteristics of a Wind Turbine Generator System and Its Considerations.7th Asia-Pacific International Conference on Lightning (APL), 2011:401-404. https://www.researchgate.net/publication/254013293_A_measurement_of_transient_grounding_characteristics_of_a_wind_turbine_generator_system_and_its_considerations
    [14]
    Elmghairbi A, Ahmeda M, Harid N.A Technique to Increase the Effective Length of Horizontal Earth Electrodes and Its Application to a Practical Earth Electrode System.7th Asia-Pacific International Conference on Lightning (APL), 2011:690-693.
    [15]
    Peesapati V, Cotton I, Sorensen T, et al.Lightning protection of wind turbines-a comparison of measured data with required protection levels.Renewable Power Generation, IET, 2011, 5(1):48-57. doi:  10.1049/iet-rpg.2008.0107
    [16]
    Ahmed M R, Ishii M.Electromagnetic Analysis of Lightning Surge Response of Interconnected Wind Turbine Grounding System.International Symposium on Lightning Protection (XI SIPDA), 2011:226-231. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000006088443
    [17]
    Zoro R, Purwadi A.The Use of Wind Turbine Structure for Lightning Protection System.International Conference on Electrical Engineering and Information (ICEEI), 2011:1-6. https://www.researchgate.net/publication/221013703_The_use_of_wind_turbine_structure_for_lightning_protection_system
    [18]
    Sakurano H, Hashimoto M, Nakamura K.Observation of Winter Lightning Striking a Wind Power Generation Tower and a Lightning Tower.28th International Conference on Lightning Protection, 2006:1522-1526.
    [19]
    Nakamura K, Sakurano H.Observation of Winter Lightning Striking a Wind Power Generation Tower (a Lightning Tower) and Its Statistical Analysis.29th International Conference on Lightning Protection, 2008:1-4.
    [20]
    洪华芳, 周歧斌, 边晓燕.风力发电机叶片的雷击损伤与雷电保护.华东电力, 2009, 37(10):1778-1781. http://www.cnki.com.cn/Article/CJFDTOTAL-HDDL200910048.htm
    [21]
    Radicevic B M, Savic M S. Experimental research on the influence of wind turbine blade rotation on the characteristics of atmospheric discharges.IEEE Transactions on Energy Conversion, 2011, 26(4):1181-1190. doi:  10.1109/TEC.2011.2162240
    [22]
    Romero D, Montany J, Candela A.Behaviour of the Wind-Turbines under Lightning Strikes Including Nonlinear Grounding System.Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ), 2004.
    [23]
    Rodrigues R B, Mendes V M F, Catalao J P S.Electromagnetic Transients Due to Lightning Strikes on Wind Turbines:A Case Study.MELECON 2010—2010 15th IEEE Mediterranean Electrotechnical Conference, 2010:1417-1422. https://www.researchgate.net/publication/224142750_Electromagnetic_Transients_due_to_Lightning_Strikes_on_Wind_Turbines_A_Case_Study
    [24]
    Paolone M, Napolitano F, Borghetti A, et al.Models of Wind-Turbine Main Shaft Bearings for the Development of Specific Lightning Protection Systems.2007 IEEE Lausanne Power Tech, 2007:783-789. http://www.academia.edu/7580095/Models_of_Wind-Turbine_Main-Shaft_Bearings_for_the_Development_of_Specific_Lightning_Protection_Systems
    [25]
    王晓辉, 张小青.风电机组塔体的雷电暂态计算模型.系统仿真学报, 2009, 21(16):4998-5001. http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200916021.htm
    [26]
    Peesapati V, Cotton I. Lightning Protection of Wind Turbines-a Comparison of Real Lightning Strike Data and Finite Element Lightning Attachment Analysis.International Conference on Sustainable Power Generation and Supply, 2009:1-8.
    [27]
    任晓毓, 张义军, 吕伟涛, 等.闪电先导随机模式的建立与应用.应用气象学报, 2011, 22(2):194-202. doi:  10.11898/1001-7313.20110208
    [28]
    任晓毓, 张义军, 吕伟涛, 等.雷击建筑物的先导连接过程模拟.应用气象学报, 2010, 21(4):450-457. doi:  10.11898/1001-7313.20100408
    [29]
    张义军, 吕伟涛, 郑栋, 等.负地闪先导-回击过程的光学观测和分析.高电压技术, 2008, 34(10):2022-2029. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200810002.htm
    [30]
    余晔, 郄秀书, 袁铁.雷暴云下地闪先导通道中的电荷分布.高原气象, 2002, 21(4):375-380. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200204005.htm
    [31]
    郑栋, 张义军, 吕伟涛, 等.先导-回击模型与人工触发闪电特征参数计算.中国电机工程学报, 2006, 26(23):151-157. doi:  10.3321/j.issn:0258-8013.2006.23.027
    [32]
    李俊, 张义军, 吕伟涛, 等.一次多回击自然闪电的高速摄像观测.应用气象学报, 2008, 19(4):401-411. doi:  10.11898/1001-7313.20080403
    [33]
    李俊, 吕伟涛, 张义军, 等.一次多分叉多接地的空中触发闪电过程.应用气象学报, 2010, 21(1):95-100. doi:  10.11898/1001-7313.20100113
    [34]
    张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi:  10.11898/1001-7313.20060619
    [35]
    杨耀, 孙杰, 陈徐, 等.利用Matlab研究尖端导体附近的电场特征及其应用.信息通信, 2011(5):7-8. http://www.cnki.com.cn/Article/CJFDTOTAL-HBYD201105006.htm
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(3)

    Article views (3284) PDF downloads(1896) Cited by()
    • Received : 2012-09-08
    • Accepted : 2013-07-11
    • Published : 2013-10-31

    /

    DownLoad:  Full-Size Img  PowerPoint