Ding Lei, Yang Yun, Bian Zeqiang, et al. Performance test of five-type photosynthetic active radiometers. J Appl Meteor Sci, 2013, 24(5): 617-624.
Citation: Ding Lei, Yang Yun, Bian Zeqiang, et al. Performance test of five-type photosynthetic active radiometers. J Appl Meteor Sci, 2013, 24(5): 617-624.

Performance Test of Five-type Photosynthetic Active Radiometers

  • Received Date: 2013-01-18
  • Rev Recd Date: 2013-05-31
  • Publish Date: 2013-10-31
  • Photosynthetic active radiometers are used to measure the solar photosynthetic active radiation. Also, it can be turned 180°, facing down to measure the photosynthetic active radiation of the ground. When it is used outdoors, the environmental condition has impacts on the performance, which may increase the measurement error. The performances of five different types of photosynthetic active radiometers are tested, such as sensitivity, cosine response, linearity, temperature dependence, spectral sensitivity and non-stability.The non-linearity errors of five photosynthetic active radiometers are all within 1%. When the irradiance is less than 250 W·m-2, the differences of the non-linearity errors for different-type radiometers are significant. Cosine response errors gets bigger with the increase of the zenith angle (θ). When the zenith angle changes from-80° to +80°, cosine response errors of PAR LITE, LI-190 and FS-PR type radiometers are within 10%; the error of TRT-5 radiometer is within 10% just in the range of-55° to +55°; and HSC-FPH-1 is within 10% when θ is-45° to +40°. When testing the effects of temperature on photosynthetic active radiometer, the temperature coefficients of PAR LITE, LI-190 and FS-PR type radiometers are within 0.3%/℃, TRT-5 and HSC-FPH-1 type photosynthetic active radiometers are within 0.5%/℃. The wavelength range of photosynthetic active radiometer is from 400 nm to 700 nm. The ideal sensor should have clear cutoffs to light below 400 nm and above 700 nm. The spectral response of PAR LITE, LI-190 type radiometers is approximated to a horizontal line, which is closer to the ideal spectral curve. The response of FS-PR is overestimated within 400—550 nm and underestimated after that. The response of TRT-5 and HSC-FPH-1 photosynthetic active radiometers is lower than the ideal curve in the whole visible waveband. The consistency of five-type photosynthetic active radiometers with the standard value are all within 5% which is tested under solar light outside. At noon, the error is smaller as the zenith angle is small; but when the zenith angle grows bigger, the error is bigger due to the increase of cosine error. The stability for photosynthetic active radiometer in the experiment are within ±3%. Due to the limited time and samples, the stability of homemade radiometer need further test. Zero offset of photosynthetic active radiometer is very small, which could be ignored. Therefore, it is necessary to calibrate the radiometer periodically to minimize the error. The analysis and comparisons of the experiment results provide scientific basis for controlling the radiometer quality, improving the measurement accuracy and selecting instrument for meteorological observations.
  • Fig. 1  The structure of photosynthetic active radiometer

    Fig. 2  Test equipments indoors for photosynthetic active radiometers

    Fig. 3  Non-linearity error of photosynthetic active radiometers

    Fig. 4  Cosine response error of photosynthetic active radiometers

    Fig. 5  Zero offset of photosynthetic active radiometers from 14 Nov to 15 Nov in 2012

    (a) LI-190 39911, (b) TRT-5 710024

    Fig. 6  Spectral responses of photosynthetic active radiometers

    Fig. 7  Error curves of photosynthetic active radiometer compared to DMc150 on 19 Oct 2012

    Table  1  Photosynthetic active radiometers of test

    型号 产地 用户
    LI-190 美国 国家气象计量站
    PAR LITE 荷兰 锡林浩特国家气候观测台
    TRT-5 中国 国家气象计量站
    FS-PR 中国 国家气象计量站
    HSC-FPH-1 中国 国家气象计量站
    DownLoad: Download CSV

    Table  2  Sensitivity tests of photosynthetic active radiometers (unit:μV/(μmol·s-1·m-2))

    型号 表号 2008-07-12 2010-09-13 2012-09-17
    LI-190 39909 4.02 3.90 4.09
    LI-190 39911 4.13 4.23 4.44
    LI-190 40067 4.02 4.18 4.37
    PAR LITE 060884 7.00 7.33
    HSC-FPH-1 024 5.42 5.72
    HSC-FPH-1 025 5.00 5.23
    FS-PR 15102 9.42
    FS-PR 15103 9.51
    TRT-5 710022 7.47 7.98
    TRT-5 710024 7.06 7.45
    DownLoad: Download CSV

    Table  3  The results of temperature response test (unit:%/℃)

    型号 表号 温度范围/℃
    [-40.0,-20.0) [-20.0,0.0) [0.0,10.0) [10.0,30.0) [30.0,50.0]
    HSC-FPH-1 024 -0.3 -0.4 -0.4 -0.1 -0.5
    HSC-FPH-1 025 -0.1 -0.1 -0.1 -0.2 -0.3
    TRT-5 710022 -0.2 -0.2 -0.1 0.01 -0.5
    TRT-5 710024 -0.2 -0.3 -0.3 -0.3 -0.2
    FS-PR 15102 0.04 0.02 0.1 0.1 -0.2
    FS-PR 15103 0.2 0.1 0.3 0.1 -0.2
    LI-190 39909 0.1 -0.1 -0.02 -0.2 -0.2
    PAR LITE 060884 -0.01 -0.1 -0.2 -0.2 -0.2
    DownLoad: Download CSV

    Table  4  The average of night zero offset and its standard deviation of photosynthetic active radiometers

    型号 表号 平均值/
    (μmol·s-1·m-2)
    标准偏差
    LI-190 39911 0.13 0.13
    LI-190 39909 0.11 0.13
    PAR LITE 090361 0.01 0.09
    HSC-FPH-1 024 0.01 0.09
    FS-PR 15103 0.02 0.05
    FS-PR 15102 0.01 0.05
    TRT-5 710024 -0.04 0.06
    TRT-5 710022 0.01 0.06
    DownLoad: Download CSV

    Table  5  Comparison results of photosynthetic active radiation using three methods on 18 Oct 2012 (unit: W·m-2)

    时段 标准光谱辐射计DMc150 LI-19039911 TRT-5710024 FS-PR15102 PAR LITE060884 HSC-FPH-1024 分光总表计算
    11:25—12:20 887.7 885.0 884.7 884.8 884.9 884.9 869.2
    12:25—13:20 772.1 783.2 779.9 784.6 783.8 786.6 763.1
    13:25—14:20 680.7 695.5 684.6 698.1 697.8 715.4 671.2
    14:25—15:20 381.7 386.9 382.4 389.8 390.4 400.4 373.2
    DownLoad: Download CSV
  • [1]
    王信理, 李相玺.植物群体结构与太阳辐射的垂直分布及其变化.应用气象学报, 1992, 3(4):424-430. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19920470&flag=1
    [2]
    吴其重, 王自发, 崔应杰.我国近20年太阳辐射时空分布状况模式评估.应用气象学报, 2012, 21(3):343-351. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201003013.htm
    [3]
    白建辉, 庚辰.兴隆地区光合有效辐射计算方法.气象科技, 2009, 37(4):472-477. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200904022.htm
    [4]
    刘建栋, 周秀骥, 于强.中国黄淮海地区冬小麦光合作用特征参数.应用气象学报, 2003, 14(3):257-265. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100310&flag=1
    [5]
    田育红, 刘鸿雁, 陆佩玲.山东禹城地区夏玉米生产与环境因子关系的初步分析.应用气象学报, 2003, 14(4):509-512. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030465&flag=1
    [6]
    王炳忠, 申彦波.自然环境条件对我国太阳能资源计算影响的再思考.应用气象学报, 2012, 23(4):505-512. doi:  10.11898/1001-7313.20120415
    [7]
    王炳忠, 莫月琴, 杨云.现代气象辐射测量技术.北京:气象出版社, 2008.
    [8]
    MacArthur L J B. 地面辐射基准站网操作手册 (第2. 1版). 中国气象局监测网络司, 编译. 2004.
    [9]
    王炳忠, 胡波, 刘广仁.光合光量子传感器校准的一些问题.太阳能学报, 2008, 1(1):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX200801003.htm
    [10]
    JJG458-96总辐射表检定规程. 北京: 中国计量出版社, 1996.
    [11]
    杨云, 王冬, 吕文华, 等.我国太阳辐射标准与量值传递.仪器仪表学报, 2007, 28(8):429-435. http://youxian.cnki.com.cn/yxdetail.aspx?filename=QXKJ201702001&dbname=CJFDPREP
    [12]
    杨云, 权继梅, 丁蕾.光合有效辐射和紫外辐射测量标准的性能验证.气象科技, 2012, 40(5):707-712. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201205003.htm
    [13]
    谢印忠, 张保洲.智能光电探测器线性测量系统的研究.传感器与微系统, 2010, 29(2):48-53. http://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201002016.htm
    [14]
    杨云, 丁蕾, 王冬.总辐射表夜间零点偏移试验与分析.气象, 2010, 36(11):100-103. doi:  10.7519/j.issn.1000-0526.2010.11.015
    [15]
    程兴宏, 张小玲, 郑向东, 等.PSP总日射表热偏移特征及其测量总辐射误差分析.太阳能学报, 2009, 30(1): 19-26. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX200901006.htm
    [16]
    ISO 9060—1990. 太阳能-半球面总日射表和太阳直射表的规范与分类. 1990.
    [17]
    McArthur L J B, Halliwell D H, Wu E A I.BSRN PAR Sensor Comparison:Bratt's Lake, Saskatchewan.The 8th session of BSRN, 2002.
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(5)

    Article views (2309) PDF downloads(1304) Cited by()
    • Received : 2013-01-18
    • Accepted : 2013-05-31
    • Published : 2013-10-31

    /

    DownLoad:  Full-Size Img  PowerPoint