Gao Yanna, He Lifu. The phase features of a cold vortex over North China. J Appl Meteor Sci, 2013, 24(6): 704-713.
Citation: Gao Yanna, He Lifu. The phase features of a cold vortex over North China. J Appl Meteor Sci, 2013, 24(6): 704-713.

The Phase Features of a Cold Vortex over North China

  • Received Date: 2013-03-20
  • Rev Recd Date: 2013-07-31
  • Publish Date: 2013-12-31
  • Using the conventional weather data, disastrous weather data, hourly precipitation data observed by automatic weather station and NCEP/NCAR reanalysis data, the phase features over North China during 12—20 July in 2011 are analyzed. The result indicates that the precipitation of the vortex is located in the northeast of Mongolia, North China and the south of Northeast China. Thunderstorm, gale and hail occur in the development stage, while short-time strong rainfall occurs in the weakening stage. Strong warm ridge is located at 850 hPa, a full jet stream exists at 200 hPa, and cold-core structure is presented on the whole troposphere in the development stage. The strong warm ridge isn't obvious in the weakening stage, the east wind is enhanced at the lower layers, and the cold-core also increases. The vortex is baroclinic at 700 hPa, the ascending motion is located in the east area and becomes stronger in the weakening stage, and the southeast wind is also speeded up. The relative humidity is larger at 300 hPa and 700 hPa, but it's dry at 500 hPa, and the south of cold vortex is invaded by dry and cold air in the development stage. The relative humidity is large at the whole layer in the weakening stage, as the vapor is brought by east wind. A northeast—southwest θe frontal zone exists in both stages of the cold vortex. The gradient of θe becomes significantly strong in the development stage, and the structure is unstable with dry and cold at the upper layer while warm and wet at the lower layer in the vertical direction. The θe frontal zone and the unstable structure weakens in the weakening stage. The cold advection which is located at the low and middle layers and the vorticity advection which is located at the middle and high layers play main roles for the cold vortex in the development stage. As the cold advection at the low layer enters the cold vortex center, the cold advection becomes weak at the middle layer, the positive vorticity advection recedes at the medium-to-high level, and the cold vortex weakens.
  • Fig. 1  The cold vortex center moving path (a) and daily variation of cold vortex center intensity and cold center intensity (b) from 12 July to 20 July in 2011

    Fig. 2  500 hPa, 200 hPa, 850 hPa geopotential height (solid line, unit:gpm), temperature (dash line, unit:℃), 200 hPa wind speed (the shaded), 850 hPa warm ridge (thick dash line), shear line (thick solid line) in the development stage and the weakening stage

    Fig. 3  Meridional section of temperature anomaly (contour, unit:℃) and height anomaly (the shaded, unit:gpm) along the cold vortex center in the development stage (a) and the weakening stage (b)

    Fig. 4  Vertical cross-section of meridional wind (black line, unit:m/s) along the cold vortex center in the development stage (a) and the weakening stage (b)(the shaded denotes ascending motion)

    Fig. 5  Meridional cross-section of the relative vorticity (contour, unit:10-5s-1; the shaded denotes the positive value) along the cold vortex center in the development stage (a) and the weakening stage (b)

    Fig. 6  Meridional cross-section of relative humidity (unit:%) along the cold vortex center at 500 hPa in the development stage (a) and the weakening stage (b)

    Fig. 7  The water vapor flux (vector, unit:g/(cm·hPa·s)) and the water vapor flux divergence (the shaded, unit:g/(cm·hPa2·s)) at 850 hPa in the development stage (a) and the weakening stage (b)

    Fig. 8  The potential temperature in the development stage and the weakening stage of cold vortex from 13 July to 20 July in 2011(unit:K)

    (a) potential temperature at 850 hPa in the development stage, (b) potential temperature at 850 hPa in the weakening stage, (c) height-time section of potential temperature at 40°N, 115°E in the development stage, (d) height-time section of potential temperature at 39°N, 114.5°E in the weakening stage

    Fig. 9  Evolution of thermal advection (unit:10-5s-1) and vorticity advection (unit:10-7s-2) averaged over 35°—50°N from 13 July to 20 July in 2011(▲ denotes the cold vortex center)

    (a) thermal advection at 850 hPa, (b) thermal advection at 500 hPa, (c) vorticity advection at 500 hPa, (d) vorticity advection at 300 hPa

  • [1]
    田秀霞, 邵爱梅.一次河北大暴雨的华北低涡结构和涡度收支分析.暴雨灾害, 2008, 27(4):320-325. http://www.cnki.com.cn/Article/CJFDTOTAL-HBQX200804006.htm
    [2]
    李江波, 王宗敏, 王福侠, 等.华北冷涡连续降雹的特征与预报.高原气象, 2011, 30(4):1119-1131. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201104030.htm
    [3]
    刘海文, 丁一汇.华北汛期的起讫及其气候学分析.应用气象学报, 2008, 19(6):687-696. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080608&flag=1
    [4]
    郁珍艳, 何立富, 范广洲, 等.华北冷涡背景下强对流天气的基本特征分析.热带气象学报, 2011, 27(1):89-94. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201101009.htm
    [5]
    孙力, 安刚.1998年夏季嫩江和松花江流域东北冷涡暴雨的成因分析.应用气象学报, 2002, 13(2):156-162. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020220&flag=1
    [6]
    闵晶晶, 刘还珠, 曹晓钟, 等.天津"6.25"大冰雹过程的中尺度特征成因.应用气象学报, 2011, 22(5):525-536. doi:  10.11898/1001-7313.20110502
    [7]
    纪晓玲, 王式功, 穆建华, 等.宁夏雷暴天气过程划分及环流分型和环境场特征.应用气象学报, 2010, 21(3):329-334. doi:  10.11898/1001-7313.20100308
    [8]
    梁爱民, 张庆红, 申红喜, 等.北京地区雷暴大风预报研究.气象, 2006, 32(11):73-81. doi:  10.3969/j.issn.1000-0526.2006.11.012
    [9]
    Ogura Y, Juang H M H.A case study of rapid cyclogensis over Canada.Part I:Diagnostic study.Mon Wea Rev, 1990, 118:655-672. doi:  10.1175/1520-0493(1990)118<0655:ACSORC>2.0.CO;2
    [10]
    Juang H M H, Ogura Y.A case study of rapid cyclogensis over Canada.Part Ⅱ:Simulations.Mon Wea Rev, 1990, 118:674-704. doi:  10.1175/1520-0493(1990)118<0674:ACSORC>2.0.CO;2
    [11]
    钟水新, 王东海, 张人禾, 等.基于CloudSat资料的冷涡对流云带垂直结构特征.应用气象学报, 2011, 22(3):257-264. doi:  10.11898/1001-7313.20110301
    [12]
    杨红梅, 赵亚民. 冷涡暴雨的物理结构及概念模型//中尺度气象文集. 北京: 气象出版社, 1993.
    [13]
    Petterssen S, Smebye S J.On the development of extra tropical cyclones.Quart J R Meteor Soc, 1971, 97:457-482. doi:  10.1002/(ISSN)1477-870X
    [14]
    丁一汇, 李鸿洲, 章名立, 等.我国飑线发生条件的研究.大气科学, 1982, 6(1):18-27. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK198201002.htm
    [15]
    王欢, 寿绍文, 解以扬, 等.干侵入对2005年8月16日华北暴雨的作用.南京气象学院学报, 2008, 31(1):97-103. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200801013.htm
    [16]
    郁淑华, 肖玉华, 高文良.冷空气对高原低涡移出青藏高原的影响.应用气象学报, 2007, 18(6):737-747. doi:  10.11898/1001-7313.200706113
    [17]
    Hsieh Yi-Ping.An investigation of a selected cold vortex over north America.J Atmos Sci, 1949, 6:401-410. doi:  10.1175/1520-0469%281949%29006%3C0401%3AAIOASC%3E2.0.CO%3B2
    [18]
    陶诗言.中国之暴雨.北京:科学出版社, 1980. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [19]
    刘英, 王东海, 张中锋, 等.东北冷涡的结构及其演变特征的个例综合分析.气象学报, 2012, 70(3):354-370. doi:  10.11676/qxxb2012.032
    [20]
    孙力, 王琪, 唐晓玲.暴雨类冷涡与非暴雨类冷涡的合成对比分析.气象, 1995, 21(3):7-10. doi:  10.7519/j.issn.1000-0526.1995.03.002
    [21]
    张云, 雷恒池, 钱贞成.一次东北冷涡衰退阶段暴雨成因分析.大气科学, 2008, 32(3):481-498. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200803005.htm
    [22]
    Browning K A.The dry intrusion perspective of extra-tropical cyclone development.Meteor Appl, 1997, 4(4):317-324. doi:  10.1017/S1350482797000613
  • 加载中
  • -->

Catalog

    Figures(9)

    Article views (3478) PDF downloads(1370) Cited by()
    • Received : 2013-03-20
    • Accepted : 2013-07-31
    • Published : 2013-12-31

    /

    DownLoad:  Full-Size Img  PowerPoint