Wang Xin, Fang Xiang, Liu Nianqing. Estimating tropical cyclone vertical gradient parameter and its relationship with TC intensity. J Appl Meteor Sci, 2013, 24(6): 714-722.
Citation: Wang Xin, Fang Xiang, Liu Nianqing. Estimating tropical cyclone vertical gradient parameter and its relationship with TC intensity. J Appl Meteor Sci, 2013, 24(6): 714-722.

Estimating Tropical Cyclone Vertical Gradient Parameter and Its Relationship with TC Intensity

  • Received Date: 2012-12-25
  • Rev Recd Date: 2013-09-09
  • Publish Date: 2013-12-31
  • There are many challenges in tropical cyclone (TC) intensity theoretical study and forecasting, and diagnostic analysis and mechanism study will help improve the understanding and predication of TC intensity evolution. And revealing TC internal structure is one of efficient methods. It is satisfying to find that TC structure and its environmental field can even be described by satellite measurements. Especially, for the applications with some microwave instruments can provide TC vertical temperature profiles to help detecting the TC internal structure, such as NOAA/AMSU-A (advanced microwave sounding unit-A) on board the polar satellites. By using NOAA/AMSU-A retrieved temperature data, more details of TC vertical structure evolution could be presented, Therefore, an objective method describing the vertical symmetry is originally proposed, which focuses on how to calculate a vertical structure index with the combined information from observations, which including the TC track and strength from CMA-STI data.In this method, the tropical cyclone vertical gradient parameter (FTC-VGP) is defined, and several prominent features for the TC upper warm-core variation in aspects of altitude, temperature anomaly and the warm core center location are considered for calculation. This parameter of FTC-VGP describe the TC upper warm-core declined from their low level circulation, it reflects the three-dimensional thermal structural information. And for this calculating method of TC internal structure, typical TCs occurs in the South China Sea and the Northwest Pacific during 2009—2011 are selected as the examples, FTC-VGP time series of all TC samples are calculated, and while the relationship between FTC-VGP and TC intensity evolution are inspected, results can be divided into three main parts.One of results demonstrates that FTC-VGP is well fitted to the TC intensity and indicating the TC intensity evolution process, anomalous and abrupt points of TC intensity in the time sequence can be found by FTC-VGP. That is, FTC-VGP abnormal inflection point indicates TC strength mutation. The second, intensity analysis result is about the relationship between FTC-VGP and environmental circulation. When the variation between TC intensity and FTC-VGP is found opposite trend, the intensity evolution cause is considered from other influences. It shows that sometimes intensity decrease is not caused by vertical structure changes, but by environmental cold air. Another important conclusion shows that FTC-VGP has a fast adaptive adjustment process to contribute to TC intensity, for example, during the TC strengthening process, the FTC-VGP increasing and decreasing generate the TC development. The result also presents the intensity changes with their internal cloud structure. In brief, FTC-VGP can give a quantitative description of TC internal three-dimensional structure characteristics, showing important reference value for grasping TC intensity and trends accurately, as well as TC monitoring and forecasting.
  • Fig. 1  Tropical cyclone vertical temperature anomaly retrieved from satellite data

    (a) cross-section of upper warm-core and rainbands of typhoon Chanthu (2010) along 19°N, (b) cross-section of double warm-core of typhoon Megi (2010) along 124°E, (c) cross-section of the warm-core evolution of typhoon Megi (2010) in the weakening stage along 120.9°E

    Fig. 2  Typhoon Nock-ten (2011) cloud image and the unsymmetrical structure at 1809 UTC 25 July 2011

    (a) the cloud image from polar satellite, (b) cross-section of temperature anomaly along 14°N, (c) cross-section of temperature anomaly along 123.4°E

    Fig. 3  The schematic diagram of FTC-VGP calculation

    Fig. 4  The time series of FTC-VGP with center pressure from 4 August to 7 August in 2009(a) and the path of tropical storm Goni (2009) in South China Sea (b) in August 2009

    Fig. 5  The cloud images at 0530 UTC 23 October 2010

    (a) the invisible channel image from MTSAT geostationary satellite and flow analysis, (b) the water vapor image from FY-2E geostationary satellite

    Fig. 6  The cross-section of temperature anomaly of typhoon Megi (2010) at 0614 UTC 23 October 2010

    Fig. 7  The time series of typhoon Megi (2010) FTC-VGP with center pressure from 17 October to 23 October in 2010

    Fig. 8  FTC-VGP fast adaptive adjustment of typhoon Morakot (2009) in the enhancing and the weakening stages from 4 August to 10 August in 2009

    Table  1  The part of tropical cyclones samples captured by microwave from 2009 to 2011

    热带气旋生成区域热带气旋编号名称微波数据覆盖热带气旋时间长度/h
    西北太平洋1108洛坦6
    1013鲇鱼6
    0908莫拉克11
    南海1003灿都4
    0907天鹅8
    DownLoad: Download CSV

    Table  2  Description of tropical storm Goni (2009) FTC-VGP and intensity evolution in August 2009

    序号时间中心最低气压/hPa相对于上一时次的强度发展趋势FTC-VGP/(rad)指示的热带气旋结构对称程度
    104T06:00980略有增强1.01热带气旋强度略有增强或基本维持,垂直倾斜度减小
    204T18:00980基本维持0.72
    305T06:00985正在减弱 (于08-04T22:00在广东台山登陆)0.52热带气旋登陆后,结果不对称性有一个突变,垂直倾斜度开始增大
    405T18:00985基本维持 (在广东境内继续西行)0.56受地形影响,垂直倾斜度增大
    506T06:00985基本维持0.67受地形影响,垂直倾斜度增大
    606T18:00983强度略有增强0.54高层云系已经进入洋面,倾斜度减小
    707T06:00972强度再次加强 (进入北部湾海面)0.40中心进入洋面,倾斜度继续减小,垂直结构趋于较对称
    807T18:00985强度再度减弱 (在北部湾打转,受到周围地形影响)1.00倾斜度再次增大,垂直结构再次向不对称发展
    DownLoad: Download CSV
  • [1]
    伍荣升.台风研究中的一些科学问题.南京大学学报:自然科学版, 2007, 43(6):567-571. http://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ200706000.htm
    [2]
    许映龙, 张玲, 高拴柱.我国台风预报业务的现状及思考.气象, 2010, 36(7):43-49. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201007010.htm
    [3]
    Dvorak V F.Tropical cyclone intensity analysis and forecasting from satellite imagery.Mon Wea Rev, 1975, 103(5):420-430. doi:  10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2
    [4]
    Kidder S Q, Goldberg M D, Zehr R M, et al.Satellite analysis of tropical cyclones using the advanced microwave sounding unit (AMSU).Bull Amer Meteor Soc, 2000, 81:1241-1259. doi:  10.1175/1520-0477(2000)081<1241:SAOTCU>2.3.CO;2
    [5]
    刘学刚, 罗哲贤, 滕代高, 等.不同发展阶段台风大气边界层暖区变化特征.南京气象学院学报, 2007, 30(3):320-327. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200703004.htm
    [6]
    钟颖旻, 徐明, 王元.Chaba (0417) 台风变性前后热力结构特征.应用气象学报, 2008, 19(5):588-594. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080510&flag=1
    [7]
    Yu H, Chan Johnny C L, Duan Y H.Intensity estimation of tropical cyclones over Western North Pacific with AMSU-A temperature data.J Meteor Soc Japan, 2006, 84:519-527. doi:  10.2151/jmsj.84.519
    [8]
    王瑾, 江吉喜.用AMSU资料揭示的不同强度热带气旋热力结构特征.应用气象学报, 2005, 16(2):159-165. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050234&flag=1
    [9]
    邱红, 谷松岩, 朱元竞.星载微波估计热带气旋中心气压的研究.电波科学学报, 2004, 19(4):393-398. http://www.cnki.com.cn/Article/CJFDTOTAL-DBKX200404002.htm
    [10]
    邱红, 方翔, 谷松岩, 等.利用AMSU分析热带气旋结构特征.应用气象学报, 2007, 18(6):810-820. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200706123&flag=1
    [11]
    林毅.9608台风内区云系结构演变与路径变化.气象科学, 1997, 17(4):350-357. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199704005.htm
    [12]
    徐文慧, 倪允琪.登陆台风环流内的一次中尺度强对流过程.应用气象学报, 2009, 20(3):267-275. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090302&flag=1
    [13]
    陈联寿.热带气旋研究和业务预报技术的发展.应用气象学报, 2006, 17(6):672-681. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606116&flag=1
    [14]
    黄新晴. 台风形成及登陆过程中三维结构演变特征的初步分析. 南京: 南京信息工程大学, 2007.
    [15]
    杨军, 董超华, 卢乃锰, 等.新一代风云极轨气象卫星业务产品及应用.北京:科学出版社, 2011. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [16]
    CMA-STI西北太平洋热带气旋最佳路径数据集说明. [2012-03-01]. http://www.typhoon.gov.cn.
    [17]
    Kurihara Y, Tuleya R E. 热带风暴发生的数值模拟//台风译文集 (三). 北京: 海洋出版社, 1988: 165-188.
    [18]
    Velden C S, Smith W L. 使用诺阿卫星的微波探测资料监视热带气旋//台风译文集 (三). 北京: 海洋出版社, 1988: 311-318.
    [19]
    毛绍荣, 黄敏辉, 曾沁, 等.南海低压倾斜结构的特征分析.热带气象学报, 2002, 18(4):345-350. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200204006.htm
    [20]
    河惠卿, 王振会, 金正润.不对称环流对台风强度变化的影响.热带气象学报, 2008, 24(3):249-254. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200803008.htm
    [21]
    Veldden C S, Goodman B M, Merrill R T.Western North Pacific tropical cyclone intensity estimation from NOAA polar-orbiting satellite microwave data.Mon Wea Rev, 1991, 119(1):159-168. doi:  10.1175/1520-0493(1991)119<0159:WNPTCI>2.0.CO;2
    [22]
    黄荣成, 雷小途.环境场对近海热带气旋突然增强与突然减弱影响的对比分析.热带气象学报, 2010, 26(2):129-137. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201002001.htm
    [23]
    雷小途.热带气旋的结构对其移动影响的动力分析.海洋学报, 2002, 24(1):35-46. http://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200201004.htm
    [24]
    付驹, 董贞花, 谭季青.台风登陆前后暖心结构变化的探讨.科技通报, 2011, 27(1):18-24. http://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201101006.htm
    [25]
    Demari A M.The effect of vertical shear on tropical cyclone intensity change.J Atmos Sci, 1996, 53(14):2076-2087. doi:  10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2
    [26]
    何洁琳, 管兆勇, 万齐林, 等.冬季登陆我国的0428和7427号台风过程的冷空气作用和水汽特征.热带气象学报, 2009, 25(5):541-551. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200905004.htm
    [27]
    韩瑛, 伍荣生.冷空气入侵对热带气旋发生发展的影响.地球物理学报, 2008, 51(5):1321-1332. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200805007.htm
    [28]
    狄利华, 姚学祥, 解以扬, 等.冷空气入侵对0509号台风"麦莎"变性的作用.南京气象学院学报, 2008, 31(1):18-25. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200801003.htm
    [29]
    李忆平, 罗哲贤.南海台风暖心结构形成的个例研究.中国科技信息, 2008, 17:29-32. http://cdmd.cnki.com.cn/Article/CDMD-10300-2007127509.htm
    [30]
    许映龙.超强台风鲇鱼路径北翘预报分析.气象, 2011, 37(1):821-826. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201107007.htm
    [31]
    刘喆, 李万彪, 韩志刚, 等.利用AMSU-A亮温估测西北太平洋区域热带气旋强度.地球物理学报, 2008, 51(1):51-57. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200801009.htm
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(2)

    Article views (2447) PDF downloads(1156) Cited by()
    • Received : 2012-12-25
    • Accepted : 2013-09-09
    • Published : 2013-12-31

    /

    DownLoad:  Full-Size Img  PowerPoint