Wu Wei, Jing Yuanshu, Ma Yuping, et al. Light response characteristics of summer maize at different growth stages under drought. J Appl Meteor Sci, 2013, 24(6): 723-730.
Citation: Wu Wei, Jing Yuanshu, Ma Yuping, et al. Light response characteristics of summer maize at different growth stages under drought. J Appl Meteor Sci, 2013, 24(6): 723-730.

Light Response Characteristics of Summer Maize at Different Growth Stages Under Drought

  • Received Date: 2012-10-24
  • Rev Recd Date: 2013-06-08
  • Publish Date: 2013-12-31
  • The field experiment of drought on summer maize growth is carried out by using large electric water proof and irrigation installations. First of all, the diurnal variations of photosynthesis and photosynthesis-light response curves of summer maize leaves are measured. And then, the different models are used to fit light response curve to determine the optimal model and extract the photosynthetic parameters. Finally, the impact of soil moisture on the photosynthetic characteristics of summer maize leaves at different growth stages is discussed. The comparison of light response curve fitting by different models shows that comparing to the non-rectangular hyperbolic model and exponential model, the simulation result of modified rectangular hyperbola model is better. In particular, it can effectively simulate the downward trend of light saturated net photosynthetic rate with light intensity increased, which is more common under drought conditions. In addition, the use of modified rectangular hyperbola model can extract the quantum efficiency of the light compensation point which is the numerical uniqueness indicator of evaluation of crop light use. The photosynthetic parameter analysis shows that both light saturation point (LSP) and maximum net photosynthetic rate (Pmax) decline in different growth stages, and quantum efficiency of light compensation point (CQY) and light compensation point (LCP) are insignificantly affected under slight drought. With the aggravation of drought, LSP and Pmax has a further decrease and CQY has a significant decline while LCP had a great increase under severe drought condition. The comparison of different growth stages show that LSP and Pmax decline largest in jointing stage, second in tasselling stage and least in milky maturity stage under slight drought. LSP and Pmax decrease by 24.1% to 43.7% and 9.3% to 46.1%. LSP and Pmax decline largest in tasselling stage, the second in milky maturity stage, the least in jointing stage under severe drought. LSP and Pmax decrease by 12.3% to 33.6% and 48.5% to 62.2%. In addition, observations show that photosynthetic and transpiration rate of summer maize leaves at different growth stages both decline under drought. The comparison of different growth stages show that photosynthetic and transpiration decline largest in tasselling stage, second in jointing stage and least in milky maturity stage under slight drought. With the aggravation of drought, photosynthetic and transpiration still decline largest in tasselling stage, but second in milky maturity stage, and least in jointing stage. Water use efficiency of maize leaves at different growth stages are relatively large under suitable soil water condition (2.8—4.5 μmol·mmol-1), and slight drought (2.6—4.2 μmol·mmol-1). Relative to tasselling and milky maturity stage, water use efficiency of maize leaves in jointing stage is the largest.
  • Fig. 1  Changes of the soi1 water content of summer maize for whole bearing period

    Fig. 2  Diurnal variations of net photosynthetic rate, transpiration rate, water use efficiency at different development stages of summer maize under different soil moisture treatments

    Fig. 3  Light response curves of photosynthesis for different development stages of summer maize under slight drought and severe drought

    Fig. 4  Variations of quantum yield at light compensation point (a), light compensation point (b), light saturation point (c) and maximum net photosynthetic rate (d) at different development stages of summer maize under different soil moisture treatments

    (K1, K2, K3, K4 denote too much water, suitable water, slight drought, severe drought, repectively)

  • [1]
    王绍武, 赵宗慈.未来50年中国气候变化趋势的初步研究.应用气象学报, 1995, 6(3):334-341. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19950352&flag=1
    [2]
    马柱国, 符淙斌.中国干旱和半干旱带的10年际演变特征.地球物理学报, 2005, 48(3):519-525. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200503007.htm
    [3]
    何有海, 程志强, 关翠华.华北地区夏季降雨量与南海海温长期变化的关系.热带海洋学报, 2003, 22(1):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-RDHY200301000.htm
    [4]
    林之光, 陆业传, 陈玉琼.黄淮海及其附近地区降水资源的稳定性.应用气象学报, 1990, 1(3):331-336. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19900349&flag=1
    [5]
    郑江平, 王春乙.低温、干旱并发对玉米苗期生理过程的影响.应用气象学报, 2006, 17(1):119-122. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060120&flag=1
    [6]
    刘明, 齐华, 孙世贤, 等.水分胁迫对玉米光合特性的影响.玉米科学, 2008, 16(4):86-90. http://cdmd.cnki.com.cn/Article/CDMD-10157-2009156933.htm
    [7]
    张仁和, 薛吉全, 浦军, 等.干旱胁迫对玉米苗期植株生长和光合特性的影响.作物学报, 2011, 37(3):521-528. http://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201103023.htm
    [8]
    钱莲文, 张新时, 杨智杰, 等.几种光合作用光响应典型模型的比较研究.武汉植物学研究, 2009, 27(2):197-203. http://www.cnki.com.cn/Article/CJFDTOTAL-WZXY200902013.htm
    [9]
    吴元中, 段项锁, 李临颖.非直角双曲线光合模型的积分及参数灵敏度分析.应用气象学报, 1993, 4(4):504-508. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19930485&flag=1
    [10]
    刘建栋, 周秀骥, 于强.中国黄淮海地区冬小麦光合作用特征参数.应用气象学报, 2003, 14(3):257-265. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030333&flag=1
    [11]
    叶子飘.光合作用对光响应新模型及其应用.生物数学学报, 2008, 23(4):710-716. http://www.cnki.com.cn/Article/CJFDTOTAL-SWSX200804019.htm
    [12]
    叶子飘, 康华靖, 陶月亮, 等.不同模型对黄山栾树快速光曲线拟合效果的比较.生态学杂志, 2011, 30(8):1662-1667. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201108013.htm
    [13]
    叶子飘, 于强.光合作用光响应模型的比较.植物生态学报, 2008, 32(6):1356-1361. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB200806019.htm
    [14]
    徐世昌, 戴俊英, 沈秀瑛, 等.水分胁迫对玉米光合性能及产量的影响.作物学报, 1995, 21(3):357-362. http://www.cnki.com.cn/Article/CJFDTOTAL-XBZW199503016.htm
    [15]
    黄永华, 史吉平, 纬建民.干旱对玉米幼苗PEP竣化酶活性的影响.玉米科学, 1995, 3(2):55-57. http://www.cnki.com.cn/Article/CJFDTOTAL-YMKX502.017.htm
    [16]
    宋风斌, 并世昌, 载俊英.水分胁迫对玉米光合作用的影响.玉米科学, 1994, 2(3):65-70. http://cdmd.cnki.com.cn/Article/CDMD-10157-2009156933.htm
    [17]
    刘祖贵, 陈金平, 段爱旺, 等.不同土壤水分处理对夏玉米叶片光合等生理特性的影响.干旱地区农业研究, 2006, 24(1):90-95. http://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ200601019.htm
    [18]
    毕建杰, 刘建栋, 叶宝兴, 等.干旱胁迫对夏玉米叶片光合及叶绿素荧光的影响.气象与环境科学, 2008, 31(1):10-15. http://www.cnki.com.cn/Article/CJFDTOTAL-HNQX200801005.htm
    [19]
    卜令铎, 张仁和, 常宇, 等.苗期玉米叶片光合特性对水分胁迫的响应.生态学报2010, 30(5):1184-1191. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201005010.htm
    [20]
    高亮之. 农业模型学基础. 香港: 天马图书有限公司, 2004: 116-119.
  • 加载中
  • -->

Catalog

    Figures(4)

    Article views (5390) PDF downloads(1397) Cited by()
    • Received : 2012-10-24
    • Accepted : 2013-06-08
    • Published : 2013-12-31

    /

    DownLoad:  Full-Size Img  PowerPoint