Zhou Hong, You Hong, Li Fan, et al. Diagnostic analysis on the first summer rainstorm process of central Yunnan in 2012. J Appl Meteor Sci, 2013, 24(6): 741-752.
Citation: Zhou Hong, You Hong, Li Fan, et al. Diagnostic analysis on the first summer rainstorm process of central Yunnan in 2012. J Appl Meteor Sci, 2013, 24(6): 741-752.

Diagnostic Analysis on the First Summer Rainstorm Process of Central Yunnan in 2012

  • Received Date: 2012-12-04
  • Rev Recd Date: 2013-07-26
  • Publish Date: 2013-12-31
  • Based on intensive observations, hourly FY-2E infrared TBB data, Doppler radar echo data and analysis data of NCEP (1°×1°, 4 times a day), the first rainstorm process in central Yunnan from 1 June to 2 June in 2012 are diagnostically analyzed using meso scale filtering method and generalized moist potential vortices theories (GMPV).The result shows that this strong precipitation process is caused by cold front and sheer, which is typical in central Yunnan. Shear line, mesoscale convergence line and meso-β-scale low vortex are significant at 700 hPa after mesoscale filtering, but they are not obvious in largescale original stream fields. So the direct causes for this rainstorm process are mesoscale weather systems. It seems apparent that the rainstorm always happens at the side which TBB gradient is higher in the convective cloud clusters by hourly FY-2E infrared TBB data. After analysis on Doppler radar echo data, there is a large area of flocculent echoes at the strong precipitation region, and then some convective clouds develop in these flocculent echoes. Distribution of rainfall is not uniform in space and the efficiency of rainfall is high because of uneven distribution of echoes in space, low height and dense structure of echoes. The source region of water vapor is the Bay of Bengal. The water vapor convergence zones have a good correlation with the position of surface cold front, shear line, mesoscale convergence line and meso-β-scale low vortex at 700 hPa. The ground precipitation strengthens when the center of vapor convergence area at 700 hPa and 850 hPa are superimposed.The positive anomaly of GMPV at mid-low layers over strong rainfall area can reflect characteristics of high water vapor convergence. Vertical distribution and change of GPMV at the low layer of single station show good indicative significance in this strong rainfall process. The rainfall is intensified when the positive anomaly of GPMV at the low layer of single station increase, and vice versa. The GMPV at 800 hPa has an indicative effect on the location of heavy rainfall. The area of GPMV positive anomaly is always located in the center of strong precipitation and its surrounding area, but the center of strong precipitation is not coincided with the center of positive anomaly of GMPV completely. The forecast of this process will be better if the circulation patterns are analyzed synthetically, and the generalized moist potential vorticity theories are used as well.
  • Fig. 1  Yunnan precipitation distributions from 0800 BT 1 June to 0800 BT 2 June in 2012

    Fig. 2  Circulation situation fields of 500 hPa and 700 hPa at 2000 BT 1 June 2012 (isoline denotes the height field, unit:dagpm)

    Fig. 3  The filtered stream fields of 700 hPa from 1 June to 2 June in 2012

    Fig. 4  Distribution of TBB from 1 June to 2 June in 2012

    Fig. 5  Redial velocity of Kunming radar station with elevation angle of 0.5°(a) and 3.4°(b) at 2004 BT 1 June 2012

    Fig. 6  Water vapor flux composition graphs from 0800 BT 31 May to

    0800 BT 2 June in 2012 at 700 hPa and 850 hPa (arrow denotes water vapor direction; the shaded denotes water flux intensity, unit:g·s-1·cm-1·hPa-1)

    Fig. 7  Vapor divergence distribution of 850 hPa and 700 hPa from 1 June to 2 June in 2012 (unit: 10-6 g·cm-2·hPa-1·s-1)

    Fig. 8  Hourly precipitation (column, unit:mm) and height-time evolution of GMPV (isoline, unit:PVU) of strong rainfall stations from 1 June to 2 June in 2012

    Fig. 9  The GMPV distribution at 800 hPa (isoline, unit: PVU) and 6 h rainfall (the shaded, unit: mm) from 1 June to 2 June 2012

    Table  1  First rainstorm processes and their influence systems in Yunnan from 2000 to 2012

    年份时段大雨及以上站次强降水落区影响系统
    20005月16日20:00—17日20:0022滇西、滇西南南支槽、西南急流
    20015月9日20:00—10日20:0024滇西、滇南南支槽、冷锋
    20025月10日20:00—11日20:0023滇西北南支槽、西南急流
    20035月18日20:00—19日20:0042滇中南支槽、切变线、冷锋
    20044月14日20:00—15日20:0036滇西、滇中南支槽、西风急流
    20056月13日20:00—14日20:0029滇中切变线、冷锋
    20064月29日20:00—30日20:0036滇南中纬低槽、西南急流
    20075月11日20:00—12日20:0022滇西北切变线、冷锋
    20085月4日08:00—5日08:0025滇西南南支槽、切变线、冷锋
    20095月30日20:00—31日20:0022滇西南支槽
    20105月25日08:00—26日08:0023滇西、滇南南支槽、西南急流
    20116月27日08:00—28日08:0036滇西、滇南南支槽、高压外围
    20126月1日08:00—2日08:0037滇中切变线、冷锋
    DownLoad: Download CSV
  • [1]
    徐美玲, 段旭, 杞明辉, 等.云南省天气预报员手册.北京:气象出版社, 2011. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [2]
    何华, 孙绩华.云南冷锋切变大暴雨过程的环流及水汽输送特征.气象, 2003, 29(4):48-52. doi:  10.7519/j.issn.1000-0526.2003.04.011
    [3]
    张秀年, 段旭.云南冷锋切变型暴雨的中尺度特征分析.南京气象学院学报, 2006, 29(1):114-121. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200601016.htm
    [4]
    段旭, 李英.滇中暴雨的湿位涡诊断分析.高原气象, 2000, 19(2):253-259. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200002014.htm
    [5]
    尤红, 曹中和.2004年云南秋季强降水位涡诊断分析.气象, 2006, 32(7):95-101. doi:  10.7519/j.issn.1000-0526.2006.07.014
    [6]
    许美玲, 段旭, 张腾飞, 等.低纬高原地区一次罕见大暴雨的中尺度数值模拟.高原气象, 2006, 25(2):268-276. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200602012.htm
    [7]
    尤红, 肖子牛, 王曼, 等.2008年"7.02"滇中大暴雨的成因诊断与数值模拟.气象, 2010, 36(1):7-16. doi:  10.7519/j.issn.1000-0526.2010.01.002
    [8]
    Gao S T, Wang X R, Zhou Y S.Generation of generalized moist potential vorticity in frictionless and moist adiabatic flow.Geophys Res Lett, 2004, 31:L12113, doi: 10.1029/2003GL019152.
    [9]
    周玉淑, 曹洁, 王东海.非均匀饱和广义湿位涡在暴雨分析与预测中的应用.应用气象学报, 2007, 18(6):754-759. doi:  10.11898/1001-7313.200706115
    [10]
    段廷扬, 邓国, 王东海.广义湿位涡与暴雨落区预报的诊断分析.大气科学, 2007, 31(6):1301-1307. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200706025.htm
    [11]
    高守亭, 周玉淑, 雷霆, 等.北京城市夏季高温高湿天气过程分析及动力识别.地球科学, 2005, 35(增刊Ⅰ):107-114. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2005S1010.htm
    [12]
    寿绍文, 励申申, 寿亦萱, 等.中尺度大气动力学.北京:高等教育出版社, 2009:249-251. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [13]
    张腾飞, 普贵明, 李燕.一次低涡切变影响云南大雨过程分析.气象科技, 2004, 32(增刊):8-14. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ2004S1002.htm
    [14]
    鲁亚斌, 郭荣芬, 张腾飞, 等.一次滇中暴雨中尺度对流系统特征分析.气象科学, 2005, 25(4):376-384. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200504006.htm
    [15]
    鲁亚斌, 张腾飞, 徐八林, 等.一次孟加拉湾风暴和冷空气影响下滇西大暴雨中尺度分析.应用气象学报, 2006, 17(2):201-206. doi:  10.11898/1001-7313.20060211
    [16]
    张腾飞, 尹丽云, 张杰, 等.云南两次中尺度对流雷暴系统演变和地闪特征.应用气象学报, 2013, 24(2):207-218. doi:  10.11898/1001-7313.20130209
    [17]
    孙淑清, 周玉淑.近年来我国暴雨中尺度动力分析研究进展.大气科学, 2007, 31(6):1171-1188. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200706014.htm
    [18]
    寿绍文.位涡理论及其应用.气象, 2010, 36(3):9-18. doi:  10.7519/j.issn.1000-0526.2010.03.002
    [19]
    高守亭, 雷霆, 周玉淑, 等.强暴雨系统中湿位涡异常的诊断分析.应用气象学报, 2002, 13(6):662-670. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020687&flag=1
    [20]
    李国平, 刘行军.西南低涡暴雨的湿位涡诊断分析.应用气象学报, 1994, 5(3):354-360. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19940361&flag=1
    [21]
    安洁, 张立凤.暴雨过程中湿位涡的中尺度时空特征.气象科学, 2004, 24(1):72-80. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-SDKX200512002041.htm
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(1)

    Article views (2661) PDF downloads(1015) Cited by()
    • Received : 2012-12-04
    • Accepted : 2013-07-26
    • Published : 2013-12-31

    /

    DownLoad:  Full-Size Img  PowerPoint