Li Junxia, Li Peiren, Tao Yue, et al. Numerical simulation and flight observation of stratiform precipitation clouds in spring of Shanxi Province. J Appl Meteor Sci, 2014, 25(1): 22-32.
Citation: Li Junxia, Li Peiren, Tao Yue, et al. Numerical simulation and flight observation of stratiform precipitation clouds in spring of Shanxi Province. J Appl Meteor Sci, 2014, 25(1): 22-32.

Numerical Simulation and Flight Observation of Stratiform Precipitation Clouds in Spring of Shanxi Province

  • Received Date: 2013-04-24
  • Rev Recd Date: 2013-07-02
  • Publish Date: 2014-01-31
  • The CAMS meso-scale cloud model is introduced and operationally applied since 2009 in Shanxi Province. The macro and micro structure of stratiform precipitation clouds, especially the vertical micro-physical structure are simulated and analyzed for a spring stratiform precipitation process in Shanxi Province on 20 April 2010 using the model. Two cloud physical detection flights are carried out by using weather modification plane with equipments of droplet measurement technologies (DMT) in the same place during the same period of the day. The data and images from flight detection and results of numerical simulation are compared and studied. Simulation results show that the precipitation process mainly comes from cold stratiform cloud. The cloud contains a lot of supercooled water, and the thickness of the rich supercooled water layer is about 4000 meters. The temperature of the supercooled layer is about 0 to-40℃, and the ratio content of the supercooled cloud water is about 0.1—0.7 g·kg-1 with some ice crystals distributed unevenly. The structures of stratus precipitation cloud can be roughly divided into three layers. The first layer (upper layer) is mainly composed of ice crystals; snow, sleet and supercooled cloud water are mixed in the second layer (middle layer); and the third layer (lower layer) is mainly of liquid raindrops. The vertical distribution and the transformation of different hydrometers in different stages of the precipitation are analyzed. The precipitation mainly comes from the melting of the ice phase particles such as ice crystals, snow, sleet and the transformation of liquid cloud droplets. Comparison of the numerical simulation results and the plane observation shows that the temperature and altitude relationship are in good agreement. The simulated vertical structure of the different cloud particles phase and the vertical distribution of the cloud liquid water ratio content are nearly the same as the vertical distribution of different cloud particles images and the cloud liquid water content of the flight detection. The difference is that the simulated height where various hydrometeors appears is higher than the actual flight detection.
  • Fig. 1  Vertical integrated water distribution at 0900 BT (a) and 2000 BT (b) on 20 April 2010

    Fig. 2  500 hPa cloud water distribution (shaded) at 0900 BT (a) and 2000 BT (b) on 20 April 2010

    (red isoline denotes temperature, unit:℃)

    Fig. 3  The number concentration distribution (shaded) of 500 hPa ice crystals at 0900 BT (a), 1200 BT (b) and 2000 BT (c) on 20 April 2010

    (red isoline denotes temperature, unit:℃)

    Fig. 4  Vertical distribution of hydrometeors over Fenyang Station of Shanxi Province at 1200 BT (a), 1500 BT (b), 1600 BT (c), 1800 BT (d) on 20 April 2010

    Fig. 5  Vertical distribution of hydrometeors of Wenshui Station at 1200 BT (a), 1500 BT (b), 1700 BT (c), 2100 BT (d) on 20 April 2010

    Fig. 6  Cloud particle images of CIP (a) and raindrop particle images of PIP (b) during the first flight on 20 April 2010

    Fig. 7  Simulated vertical distribution of the hydrometeors at 1100 BT over Fenyang Station (a) and 1200 BT over Wenshui Station (b) on 20 April 2010

    Fig. 8  Vertical distribution of the CDP-LWC (a) and the number concentration of cloud particles (b) during the first flight on 20 April 2010

    Fig. 9  Cloud particle images of CIP (a) and raindrop particle images of PIP (b) during the second flight on 20 April 2010

    Fig. 10  Simulated vertical distribution of hydrometeors over Fenyang Station at 1600 BT (a) and 1700 BT (b) on 20 April 2010

    Fig. 11  Vertical distribution of the CDP-LWC (a) and the number concentration of cloud particles (b) during the second flight on 20 April 2010

    Table  1  The temperature and height contrast references of the two-flight detections and numerical simulation on 20 April 2010

    层次 第1次 第2次
    飞机探测 数值模拟 飞机探测 数值模拟
    0℃层 3075~3102 m 3100 m附近 2981~3130 m 3100 m附近
    -5℃层 4234~4337 m 4300 m附近 4503~4565 m 4500 m附近
    -10℃层 5600~5633 m 5600 m附近 5750~5782 m 5600 m附近
    DownLoad: Download CSV
  • [1]
    顾震潮.云雾降水物理基础.北京:科学出版社, 1980.
    [2]
    胡志晋.层状云人工增雨机制、条件和方法的探讨.应用气象学报, 2001, 12(增刊):10-13. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2001S1001.htm
    [3]
    洪延超, 周非非."催化供给"云降水形成机理的数值模拟研究.大气科学, 2005, 29(6):885-896. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200506004.htm
    [4]
    史月琴, 楼小凤, 邓雪娇, 等.华南冷锋云系的中尺度和微物理特征模拟分析.大气科学, 2008, 32(5):1019-1036. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200805002.htm
    [5]
    孙晶, 楼小凤, 胡志晋, 等.CAMS复杂云微物理方案与GRAPES模式耦合的数值试验.应用气象学报, 2008, 19(3):315-325. doi:  10.11898/1001-7313.20080307
    [6]
    胡志晋.关于空中水资源和人工增雨潜力的估算问题.人工影响天气, 1999, 12:53-55.
    [7]
    洪延超, 周非非.层状云系人工增雨潜力评估研究.大气科学, 2006, 30(5):913-926. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200605019.htm
    [8]
    陈秋萍, 曾光平, 冯宏芳, 等.对流云总降水量和降水效率估测.应用气象学报, 2005, 16(2):260-263. doi:  10.11898/1001-7313.20050232
    [9]
    陈万奎, 严采蘩.冰相雨胚转化水汽密度差的实验研究.应用气象学报, 2001, 12(增刊):23-29. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2001S1003.htm
    [10]
    陈文选, 王俊, 刘文, 等.一次冷涡过程降水的微物理机制分析.应用气象学报, 1999, 10(2):190-198. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990258&flag=1
    [11]
    汪学林, 秦元明, 吴宪君, 等.层状云中对流泡特征及其在降水场中的作用.应用气象学报, 2001, 12(增刊):146-150. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2001S1018.htm
    [12]
    雷恒池, 魏重, 沈志来, 等.微波辐射计探测降雨前水汽和云液水.应用气象学报, 2001, 12(增刊):73-79. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2001S1009.htm
    [13]
    李宏宇, 马建立, 马永林, 等.北京2008年奥运会开幕日云、降水特征及人工影响天气作业分析.气候与环境研究, 2011, 16(2):175-187. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201102008.htm
    [14]
    陶玥, 洪延超.霰粒子下落速度对云系及降水发展影响的数值研究.气象学报, 2009, 67(3):370-381. doi:  10.11676/qxxb2009.036
    [15]
    何观芳, 胡志晋.不同云底温度雹云成雹机制及其引晶催化的数值研究.气象学报, 1998, 56(1):31-45. doi:  10.11676/qxxb1998.003
    [16]
    李宏宇, 王华, 洪延超.锋面云系降水中的增雨潜力数值研究.大气科学, 2006, 30(2):341-350. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200602015.htm
    [17]
    胡志晋, 楼小凤, 刘奇俊, 等. 显式云与降水模式//CAMS大气数值预报模式系统研究. 北京: 气象出版社, 2004.
    [18]
    孙晶, 楼小凤, 胡志晋, 等.梅雨暴雨对流系统的中小尺度结构特征个例模拟分析.大气科学, 2007, 31(1):1-18. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200510001293.htm
  • 加载中
  • -->

Catalog

    Figures(11)  / Tables(1)

    Article views (3647) PDF downloads(1081) Cited by()
    • Received : 2013-04-24
    • Accepted : 2013-07-02
    • Published : 2014-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint