Yang Wei, Miao Junfeng, Tan Zhemin. Numerical simulation of the lake breeze impact on thunderstorm over the Taihu Area. J Appl Meteor Sci, 2014, 25(1): 59-70.
Citation: Yang Wei, Miao Junfeng, Tan Zhemin. Numerical simulation of the lake breeze impact on thunderstorm over the Taihu Area. J Appl Meteor Sci, 2014, 25(1): 59-70.

Numerical Simulation of the Lake Breeze Impact on Thunderstorm over the Taihu Area

  • Received Date: 2013-03-24
  • Rev Recd Date: 2013-09-10
  • Publish Date: 2014-01-31
  • During the afternoon hours of 18 August 2010, thunderstorms struck the Taihu area and cause extensive damage in the vicinity. To investigate the impact of lake land use changes on the evolution of the severe thunderstorms, a coupled Weather Research and Forecasting (WRF) model with the NOAH land surface model is used. The control run and two sensitivity experiments are designed. The control run (CNTL) is carried out with the original surface characteristics; the first sensitivity experiment EXP1 is designed to replace the Taihu with cropland; and in the second sensitivity experiment EXP2 the underlying surface is considered as water. Three experiments employ four nested fixed grid which are set as a two-way run with spacing of 27, 9, 3, 1 km, respectively. The initial and boundary conditions are provided by the NCEP FNL analysis. To verify the simulation, the control run results from 1 km domain are compared with observation.Results show that the control run simulates well both lake-land breeze circulation and remarkable lake-land breeze evolution on 18 August 2010. It is found that the wind speed and depth of the lake breeze are horizontal asymmetries on the east and west coast of the Taihu are affected by southeasterly gradient flows and valley breeze. At the leading edge of lake breeze circulation called lake breeze front, convergence lines spread along the lake shore, and then the ascending motion, moisture air and low-level vertical wind shear triggers the development of thunderstorm at 1200 BT. Characteristics of the diurnal evolution of the thunderstorm are reproduced by WRF model, representing the initiation of convection along the lake breeze front and the formation of thunderstorm, and then the collision between outflow from thunderstorm and lake breeze triggers a new thunderstorm.The convective cloud doesn't develop in EXP1, and the whole area shows cloudless in EXP2. The comparison experiments show that the lake breeze front triggers and strengthens the severe convective weather. In the course of thunderstorm development, the exchange of sensible heat fluxes can change the structure of the boundary layer, and make the atmosphere more unstable. On the other hand, the surface fluxes moisten the boundary layer atmosphere and enhance horizontal convergence and divergence which can accelerate the development of cloud and precipitation.
  • Fig. 1  The topography of simulation area

    (a) four nested domains, (b) area of domain 4

    Fig. 2  Land use category for CNTL of domain 4

    Fig. 3  The wind (vector), geopotential height (solid line, unit:dagpm) and temperature (dashed line, unit:℃) at 0800 BT 18 August 2010

    (a)500 hPa, (b)850 hPa

    Fig. 4  The 24-h accumulated precipitation (unit:mm) from 0000 BT to 2400 BT on 18 August 2010

    (a) observed, (b) simulated

    Fig. 5  Comparisons between the observed and the simulated of 2-m temperature, 10-m wind speed on 18 August 2010

    Fig. 6  The simulated 2-m temperature (contour, unit:℃) and 10-m wind (minus area-averaged) on 18 August 2010

    (the shaded denotes model terrain, the dashed blue line denotes the position of lake breeze front, the same hereinafter)

    Fig. 7  Vertical cross section of simulated wind field (the w-component is multiplied by a factor of 20), pseudo-equivalent potential temperature (contour, unit:K) and vertical velocity (shaded) along AB on 18 August 2010

    (the lake surface is represented by solid black thick line, the same hereinafter)

    Fig. 8  Vertical cross section of simulated cloud water mixing ratio (shaded) and rain water mixing ratio (contour, unit:g·kg-1) along AB on 18 August 2010

    Fig. 9  Vertical cross section of simulated wind field (w-component is multiplied by a factor of 20), pseudo-equivalent potential temperature (contour, unit:K) and vertical velocity (shaded) along AB at 1200 BT 18 August 2010

    Fig. 10  Hourly area-averaged sensible heat flux, latent heat flux, net radiation and PBL height for simulations of domain 4 on 18 August 2010

    Fig. 11  Vertical cross section of simulated cloud water mixing ratio (shaded) and rain water mixing ratio (contour, unit:g·kg-1) along AB at 1200 BT 18 August 2010

  • [1]
    Shen J.Numerical modelling of the effects of vegetation and environmental conditions on the lake breeze. Bound-Layer Meteor, 1998, 87:481-498. doi:  10.1023/A:1000906300218
    [2]
    Daggupaty S M A.Case study of the simultaneous development of multiple lake-breeze fronts with a boundary layer forecast model. J Appl Meteor, 2001, 40:289-311. doi:  10.1175/1520-0450(2001)040<0289:ACSOTS>2.0.CO;2
    [3]
    逄勇, 濮培民.太湖区域三维湖陆风场数值模拟.大气科学, 1995, 19(2):243-251. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK502.013.htm
    [4]
    King P A.Long-lasting Squall Line Induced by Interacting Lake Breezes.18th Conference on Severe Local Storms, 1996:764-767.
    [5]
    King P, Leduc M J, Sills D M L, et al.Lake breezes in southern Ontario and their relation to tornado climatology. Wea Forecasting, 2003, 18:795-807. doi:  10.1175/1520-0434(2003)018<0795:LBISOA>2.0.CO;2
    [6]
    孔凡铀, 黄美元, 徐华英.冷水面对积云的影响-数值试验.大气科学, 1987, 11(2):160-166. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK198702006.htm
    [7]
    杜华武, 颜宏.下垫面特征对一次短期天气过程影响的数值试验 (Ⅰ).应用气象学报, 1993, 4(2):129-136. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19930225&flag=1
    [8]
    杜华武, 颜宏.下垫面特征对一次短期天气过程影响的数值试验 (Ⅱ).应用气象学报, 1993, 4(4):385-393. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19930467&flag=1
    [9]
    陈江, 陈万隆, 陈宇能, 等.中尺度非均一边界层气候的数值研究:(Ⅰ) 敏感性试验.应用气象学报, 1992, 3(4):394-401. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19920466&flag=1
    [10]
    陈江, 陈万隆, 陈宇能, 等.中尺度非均一边界层气候的数值研究:(Ⅱ) 夏季的数值试验.应用气象学报, 1993, 4(1):30-37. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19930103&flag=1
    [11]
    董佩明, 张维桓, 沈桐立.下垫面强迫对京津冀大暴雨作用的数值研究.应用气象学报, 1999, 10(4):436-444. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990498&flag=1
    [12]
    王彦, 于莉莉, 李艳伟, 等.边界层辐合线对强对流系统形成和发展的作用.应用气象学报, 2011, 22(6):724-731. doi:  10.11898/1001-7313.20110610
    [13]
    苗曼倩, 唐有华.长江三角洲夏季海陆风与热岛环流的相互作用及城市化的影响.高原气象, 1998, 17(3):59-68. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX803.007.htm
    [14]
    李维亮, 刘洪利, 周秀骥, 等.长江三角洲城市热岛与太湖对局地环流影响的分析研究.中国科学:D辑, 2003, 33(2):97-104. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200302000.htm
    [15]
    Miao J F, Chen D, Wyser K, et al.Evaluation of MM5 mesoscale model at local scale for air quality applications over the Swedish west coast:Influence of PBL and LSM parameterizations. Meteor Atmos Phys, 2008, 99:77-103. doi:  10.1007/s00703-007-0267-2
    [16]
    Miao J F, Wyser K, Chen D, et al.Impacts of boundary layer turbulence and land surface process parameterizations on simulated sea breeze characteristics. Ann Geophys, 2009, 27:2303-2320. doi:  10.5194/angeo-27-2303-2009
    [17]
    蒙伟光, 李江南, 王安宇, 等.凝结加热和地表通量对华南中尺度对流系统 (MCS) 发生发展的影响.热带气象学报, 2005, 21(4):368-376. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200504003.htm
  • 加载中
  • -->

Catalog

    Figures(11)

    Article views (4472) PDF downloads(775) Cited by()
    • Received : 2013-03-24
    • Accepted : 2013-09-10
    • Published : 2014-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint