Song Liuming, Liu Yu, Zhu Bin, et al. Direct effects of tropospheric aerosols on stratospheric climate. J Appl Meteor Sci, 2014, 25(1): 83-94.
Citation: Song Liuming, Liu Yu, Zhu Bin, et al. Direct effects of tropospheric aerosols on stratospheric climate. J Appl Meteor Sci, 2014, 25(1): 83-94.

Direct Effects of Tropospheric Aerosols on Stratospheric Climate

  • Received Date: 2013-04-15
  • Rev Recd Date: 2013-10-29
  • Publish Date: 2014-01-31
  • The comparison between satellite data and WACCM-3 model simulated results shows that simulated results are well consistent with satellite data in central Africa, the Arabian Peninsula, Indian subcontinent, and most parts of China, but in south central Africa, Caribbean and Europe, the model results are lower. In short, model results can well reproduce the global distribution of aerosols, but numerical difference exists in some areas.Simulation indicates that changes of stratospheric temperature are neither caused by changes of stratospheric short-wave radiation nor decided by the changes of long-wave radiation. The changes of stratospheric temperature are not caused by the tropospheric aerosol effect but the results of dynamic process, and the changes of longwave radiative heating rate are in response to temperature changes and mitigate the change. The process of stratospheric chemical, dynamic and radiation process are tightly coupled together. By comparison, the experiment group A including stratospheric chemical process and experiment group B not including stratospheric chemical process, it shows that the changes of temperature and wind are different in the tropospheric aerosols direct effect on stratosphere. The stratospheric chemical process is of vital importance on the tropospheric aerosols effects on stratospheric climate. Stratospheric chemical process has different effects in different seasons and in different regions, polar and high-altitude regions are considered to be mostly affected, in addition, stratospheric chemical process also has great influence on the upper stratosphere. The temperature variation can reach 6 K at the most, and zonal wind variation can also reach 12 m/s. The tropospheric aerosols influence the tropospheric radiative balance, tropospheric temperature, atmospheric circulation and EP flux, and changes in EP flux indicate the planetary wave propagation changes.Planetary wave propagation changes make the stratospheric climate change: Stratospheric temperature, and wind field change, stratospheric ozone and radiation and dynamic processes are closely linked and influenced by each other, the temperature and wind changes will influence the concentration of ozone. Polar and high-latitude regions are considered to be mostly affected, and the impact on southern high latitudes is greater than that on northern high latitudes. The temperature variation can reach 10 K at the most, zonal wind variation can also reach 12 m/s and ozone mixing ratio can decline for 0.8×10-6 at the most at 20 hPa in the lower Antarctic stratosphere, while in most other areas the temperature change does not exceed 1 K.
  • Fig. 1  The difference of mean net short-wave radiative flux, surface net short-wave radiative flux, surface net short-wave radiative flux with clear sky between EXP3 and EXP4

    Fig. 2  The difference of mean temperature (shaded) and zonal wind (contour, unit:m·s-1) between EXP1 and EXP2

    Fig. 3  The difference of mean O3 volumetric mixture ratio between EXP1 and EXP2

    Fig. 4  The mean EP flux from EXP2 and its difference between EXP1 and EXP2

    Fig. 5  The difference of mean temperature (shaded) and zonal wind (contour, unit:m·s-1) between EXP3 and EXP4

    Fig. 6  The difference of mean temperature (shaded) and zonal wind (contour, unit:m·s-1) between experiment group A and B

    Fig. 7  The difference of mean net short-wave radiative heating rate (contour) and net long-wave radiative heating rate (shaded) between EXP3 and EXP4(unit:10-2 K·d-1)

    Table  1  Meridional horizontal eddy heat flux (unit:K·m·s-1) at 100 hPa averaged over 40°—80°S and 40°—80°N

    月份 北半球经向热通量 南半球经向热通量
    EXP1 EXP2 EXP1 EXP2
    1 4.96 5.54 1.62 2.1
    4 2.42 1.69 0.9 1.02
    7 2.1 2.06 3.29 4.1
    10 0.99 0.68 0.94 1.29
    DownLoad: Download CSV
  • [1]
    Alley R, Berntsen T, Bindoff N L.Climate Change 2007—The Physical Science Basis.Working Group Ⅰ Contribution to the Fourth Assessment Report of the IPCC.Cambridge:Cambridge University Press, 2007:1-1009.
    [2]
    Forster P, Ramaswamy V, Artaxo P, et al.Changes in Atmospheric Constituents and in Radiative Forcing.Climate Change 2007:Working Group Ⅰ Contribution to the Fourth Assessment Report of the IPCC.Cambridge:Cambridge University Press, 2007:129-234.
    [3]
    Lau K, Kim M, Kim K.Asian summer monsoon anomalies induced by aerosol direct forcing:The role of the Tibetan Plateau. Climate Dynamics, 2006, 26:855-864. doi:  10.1007/s00382-006-0114-z
    [4]
    Liu Y, Sun J, Yang B.The effects of black carbon and sulphate aerosols in China regions on East Asia monsoons. Tellus B, 2009, 61:642-656. doi:  10.1111/teb.2009.61.issue-4
    [5]
    孙家仁, 刘煜.中国区域气溶胶对东亚夏季风的可能影响 (Ⅰ):硫酸盐气溶胶的影响.气候变化研究进展, 2008, 4(2):111-116. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200802015.htm
    [6]
    孙家仁, 刘煜.中国区域气溶胶对东亚夏季风的可能影响 (Ⅱ):黑碳气溶胶及其与硫酸盐气溶胶的综合影响.气候变化研究进展, 2008, 4(3):161-166. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200803008.htm
    [7]
    赵春生, 彭大勇, 段英.海盐气溶胶和硫酸盐气溶胶在云微物理过程中的作用.应用气象学报, 2005, 16(4):417-425. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050452&flag=1
    [8]
    田华, 马建中, 李维亮, 等.中国中东部地区硫酸盐气溶胶直接辐射强迫及气候效应的数值模拟.应用气象学报, 2005, 16(3):322-333. doi:  10.11898/1001-7313.20050307
    [9]
    李鑫, 刘煜.CAM5模式中两气溶胶模块的评估.应用气象学报, 2013, 24(1):75-86. doi:  10.11898/1001-7313.20130108
    [10]
    胡永云, 夏炎, 高梅, 等.21世纪平流层温度变化和臭氧恢复.气象学报, 2008, 66(6):880-891. doi:  10.11676/qxxb2008.080
    [11]
    陈文, 黄荣辉.北半球冬季准定常行星波的三维传播及其年际变化.大气科学, 2005, 29(1):137-146. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200501015.htm
    [12]
    熊光明, 陈权亮, 魏麟骁, 等.平流层极涡偏移对我国冬季降水的影响.应用气象学报, 2012, 23(6):683-690. doi:  10.11898/1001-7313.20120605
    [13]
    胡永云, 朱金奎, 刘骥平.1979年以来南极平流层冬季变暖.气象学报, 2007, 65(5):773-783. doi:  10.11676/qxxb2007.073
    [14]
    邓淑梅, 陈月娟, 陈权亮, 等.平流层爆发性增温期间行星波的活动.大气科学, 2006, 30(6):1236-1248. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200606017.htm
    [15]
    陆春晖, 刘毅, 陈月娟, 等.2003—2004年冬季平流层爆发性增温动力诊断分析.大气科学, 2009, 33(4):726-736. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200904008.htm
    [16]
    胡永云.关于平流层异常影响对流层天气系统的研究进展.地球科学进展, 2006, 21(7):713-720. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200607008.htm
    [17]
    曲维政, 刘应辰, 黄菲, 等.平流层火山气溶胶时空传播规律及其气候效应.应用气象学报, 2010, 24(5):627-631. doi:  10.11898/1001-7313.20100513
    [18]
    Shu J, Tian W, Austin J, et al.Effects of sea surface temperature and greenhouse gas changes on the transport between the stratosphere and troposphere. J Geophys Res, 2011, 116:D02124, doi: 10.1029/2010JD014520.
    [19]
    Gerfinkel C, Hartmann D.Effects of the El Nio-Southern Oscillation and the Quasi-Biennial Oscillation on polar temperature in the stratosphere. J Geophys Res, 2007, 112:D19112, doi: 10.1029/2007JD008481.
    [20]
    Kodama C, Iwasaki T, Shibata K, et al.Changes in the stratosphere mean meridional circulation due to increased CO2:Radiation-and sea surface temperature-induced effects. J Geophys Res, 2007, 112:D16103, doi: 10.1029/2006JD008219.
    [21]
    Xie F, Tian W, Chipperfield M P.Radiative effect of ozone change on stratosphere-troposphere exchange. J Geophys Res, 2007, 113, D00B09, doi: 10.1029/2008JD009829.
    [22]
    Lin S J.A vertically Lagrangian finite-volume dynamical core for global models. Mon Wea Rev, 2004, 132(10):2293-2307. doi:  10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2
    [23]
    Kinnison D E, Brasseur G P, Walters S, et al.Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. J Geophys Res, 2007, 112:D20302, doi: 10.1029/2006JD007879.
    [24]
    Fomichev V, Forster P, Cagnazzo C, et al.SPARC Report on the Evaluation of Chemistry Climate Models:Chapter 3 Radiation.2010.
    [25]
    Butchart N, Charlton-Perez A J, Cionni I, et al.SPARC Rep-ort on the Evaluation of Chemistry Climate Models.SPARC Report No.5, WCRP-132, WMO/TD No.1526, 2010.
    [26]
    Limpasuvan V, Richter J H, Orsolini Y J, et al.The roles of planetary and gravity waves during a major stratospheric sudden warming as characterized in WACCM. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 78:84-98. https://www.researchgate.net/publication/235751567_The_roles_of_planetary_and_gravity_waves_during_a_major_stratospheric_sudden_warming_as_characterized_in_WACCM
    [27]
    Rasch P J, Mahowald N M, Eaton B E.Representations of transport, convection, and the hydrologic cycle in chemical transport models:Implications for the modeling of short-lived and soluble species. J Geophys Res, 1997, 102, 28:127-138. http://www.academia.edu/5214713/Representations_of_transport_convection_and_the_hydrologic_cycle_in_chemical_transport_models_Implications_for_the_modeling_of_short-lived_and_soluble_species
    [28]
    Stowe L L, A M, Singh R R.Development, validation, and potential enhancements to the second-generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration. J Geophys Res, 1997, 102, 16:889-910. https://www.researchgate.net/publication/4699718_Development_Validation_and_Potential_Enhancements_to_the_Second-Generation_Operational_Aerosol_Product_at_the_National_Environmental_Satellite_Data_and_Information_Service_of_the_National_Oceanic_and_
    [29]
    Collins W D, Rasch P J, Eaton B E, et al.Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals:Methodology for INDOEX. J Geophys Res, 2001, 106:7313-7336. doi:  10.1029/2000JD900507
    [30]
    Collins W D, Rasch P J, Eaton B E, et al.Simulation of aerosol distributions and radiative forcing for INDOEX:Regional climate impacts. J Geophys Res, 2002, 107(D19), 8028, doi: 10.1029/2000JD000032.
    [31]
    Collins W D, Rasch P J, Boville B A, et al.Descripition of the NCAR Community Atmosphere Model (CAM3.0).NCAR Tech, Note NCAR TN-464+STR, 2004.
    [32]
    王志立. 典型种类气溶胶的辐射强迫及其气候效应的模拟研究. 北京: 中国科学院研究生院, 2011.
    [33]
    Dickinson R E.Planetary Rossby waves propagating vertically through weak westerly wind wave guides. J Atmos Sci, 1968, 25:984-1002. doi:  10.1175/1520-0469(1968)025<0984:PRWPVT>2.0.CO;2
    [34]
    Hardiman S C, Butchart N, Haynes P H, et al.A note on forced versus internal variability of the stratosphere. Geophys Res Lett, 2007, 34, L12803, doi: 10.1029/2007GL029726.
    [35]
    Eyring V, Butchart N, Waugh D W, et al.Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. J Geophys Res, 2006, 111:D22308, doi: 10.1029/2006JD007327.
    [36]
    Andrews D G, McIntyre M E.Planetary waves in horizontal and vertical shear:The generalized Eliassen-Palm relation and the mean zonal acceleration. J Atmos Sci, 1976, 33(11):2031-2048. doi:  10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2
    [37]
    Charney J G, Drazin P G.Propagation of planetary-scale disturbance from the lower into the upper atmosphere. J Geophys Res, 1961, 66:83-109. doi:  10.1029/JZ066i001p00083
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(1)

    Article views (3092) PDF downloads(813) Cited by()
    • Received : 2013-04-15
    • Accepted : 2013-10-29
    • Published : 2014-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint