参量 | 总样本正确率 | 地物识别正确率 | 对流云误判率 | 层状云误判率 |
TDBZ | 98.4 | 97.0 | 1.84 | 0.12 |
GDBZ | 91.7 | 82.7 | 2.1 | 5.5 |
SPIN | 97.4 | 96.1 | 3.0 | 1.0 |
MDVE | 92.8 | 89.1 | 4.7 | 5.9 |
Citation: | Li Feng, Liu Liping, Wang Hongyan, et al. Identification of ground clutter with C-band Doppler weather radar. J Appl Meteor Sci, 2014, 25(2): 158-167. |
Fig. 1 PPI of Changzhi radar at 0700 BT 2 Jul 2011 (range rings at 50 km intervals)
(a) reflectivity at 0.5° elevation, (b) radial velocity at 0.5° elevation, (c) echo classify at 0.5° elevation
(AP shows ground clutter, CA shows clear air echoes, SC shows stratiform cloud, CC shows convective cloud)
Fig. 5 PPI of Harbin radar at 0701 BT 25 Jul 2011(range rings at 50 km intervals)
(a) reflectivity at 0.5° elevation, (b) radial velocity at 0.5° elevation, (c) reflectivity at 1.5° elevation, (d) radial velocity at 1.5° elevation, (e) reflectivity at 0.5° elevation after echo identification with MSA, (f) reflectivity at 0.5° elevation after echo identification with MCC
Fig. 6 PPI of Changzhi radar at 0705 BT 2 Jul 2011(range rings at 50 km intervals)
(a) reflectivity at 0.5° elevation, (b) radial velocity at 0.5° elevation, (c) reflectivity at 1.5° elevation, (d) radial velocity at 1.5° elevation, (e) reflectivity at 0.5° elevation after echo identification with MSA, (f) reflectivity at 0.5° elevation after echo identification with MCC
Fig. 7 PPI of Harbin radar at 1105 BT 3 Jun 2011(range rings at 50 km intervals)
(a) reflectivity at 0.5° elevation, (b) radial velocity at 0.5° elevation, (c) reflectivity at 1.5° elevation, (d) radial velocity at 1.5° elevation, (e) reflectivity at 0.5° elevation after echo identification with MSA, (f) reflectivity at 0.5° elevation after echo identification with MCC
Table 1 Identifiable accuracy of each characteristic parameter (unit:%)
参量 | 总样本正确率 | 地物识别正确率 | 对流云误判率 | 层状云误判率 |
TDBZ | 98.4 | 97.0 | 1.84 | 0.12 |
GDBZ | 91.7 | 82.7 | 2.1 | 5.5 |
SPIN | 97.4 | 96.1 | 3.0 | 1.0 |
MDVE | 92.8 | 89.1 | 4.7 | 5.9 |
Table 2 Identifiable accuracy for ground clutter echoes and false detection of precipitation echoes (unit:%)
识别方法 | 总样本正确率 | 地物识别正确率 | 对流云误判率 | 层状云误判率 |
MCC | 99.2 | 97.8 | 0.31 | 0.03 |
MSA | 87.4 | 62.3 | 0.03 | 0.18 |
MSC | 98.5 | 97.9 | 1.64 | 0.69 |
[1] |
Mueller E A, Sims A L.Statistics of High Radar Reflectivity Gradients.Preprints, 16th Radar Meteorology Conf, Houston, TX, Amer Meteor Soc, 1975:401-403.
|
[2] |
Collier C G, Lovejoy S, Austin G L.Analysis of Bright Bands From 3-Dradar data.Preprints, 19th Conf on Radar Meteorology, Miami Beach, FL, Amer Meteor Soc, 1980:44-47.
|
[3] |
Hogg W D.Quality Control and Analysis of An Archive of Digital Radar Data.Preprints, 18th Conf on Radar Meteorology, Atlanta, GA, Amer Meteor Soc, 1978:150-154.
|
[4] |
Smith P L.Precipitation Measurement and Hydrology: Panel Report//Radar in Meteorology.Atlas D.Amer Meteor Soc, 1990:607-618.
|
[5] |
Hall M P M, Goddard J W F, Cherry S M.Identification of hydrometeors and other targets by dual-polarization radar.Radio Sci, 1984, 19:132-140. doi: 10.1029/RS019i001p00132
|
[6] |
Joss J, Wessels H.Ground Clutter Suppression for Weather Radar Data.COST Tech Rep 73/WD/130, 1990:6.
|
[7] |
Steiner M, Smith J A.Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data.J Atmos Ocean Technol, 2002, 19:673-686. doi: 10.1175/1520-0426(2002)019<0673:UOTDRS>2.0.CO;2
|
[8] |
Zhang J, Wang S, Clarke B.WSR-88D Reflectivity Quality Control Using Horizontal and Vertical Reflectivity Structure.Preprints, 11th Conference on Aviation, Range, and Aerospace Meteorology, AMS, 2004, P5.4.
|
[9] |
Kessinger C, Ellis S, Andel J V, et al.The AP Clutter Mitigation Scheme for the WSR-88D.31st International Conference on Radar Meteorology, Amer Meteor Soc, 2003.
|
[10] |
Kessinger C, Ellis S, Andel J V.The Radar Echo Classifier:A Fuzzy Logic Algorithm for the WSR-88D.3rd Conference on Artificial Intelligence Applications to the Environmental Science, Amer Meteor Soc, 2003.
|
[11] |
Kessinger C, Ellis S, Andel J V, et al.NEXRAD Data Quality Optimization—Annual Report for Fiscal Year 2002.2003.
|
[12] |
Kessinger C, Ellis S, Andel J V, et al.NEXRAD Data Quality Optimization—Annual Report for Fiscal Year 2003.2003.
|
[13] |
Lakshmanan V, Fritz A, Smith T, et al.An automated technique to quality control radar reflectivity data.J Appl Meteor Climatol, 2007, 46(3):288-305. doi: 10.1175/JAM2460.1
|
[14] |
Gourley J J, Tabary P, Chatelet J P D.A fuzzy logic algorithm for the separation of precipitating from nonprecipitating echoes using polarimetric radar observations.J Atmos Ocean Technol, 2007, 24:1439-1451. doi: 10.1175/JTECH2035.1
|
[15] |
东高红, 刘黎平.雷达与雨量计联合估测降水的相关性分析.应用气象学报, 2012, 23(1): 30-39. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120104&flag=1
|
[16] |
李华宏, 薛纪善, 王曼, 等.多普勒雷达风廓线的反演及变分同化试验.应用气象学报, 2007, 18(1):50-57. doi: 10.11898/1001-7313.20070110
|
[17] |
朱敏华, 俞小鼎, 夏峰, 等.强烈雹暴三体散射的多普勒多天气雷达分析.应用气象学报, 2006, 17(2):215-225. doi: 10.11898/1001-7313.20060213
|
[18] |
徐广阔, 孙建华, 雷霆, 等.多普勒天气雷达资料同化对暴雨模拟的影响.应用气象学报, 2009, 20(1):36-46. doi: 10.11898/1001-7313.20090105
|
[19] |
刘黎平, 吴林林, 杨引明.基于模糊逻辑的分步式超折射地物回波识别方法的建立和效果分析.气象学报, 2007, 65(2):252-260. doi: 10.11676/qxxb2007.024
|
[20] |
江源, 刘黎平, 庄薇.多普勒天气雷达地物回波特征及其识别方法改进.应用气象学报, 2009, 20(2):203-213. doi: 10.11898/1001-7313.20090210
|
[21] |
王佑兵, 万玉发.雷达体扫反射率场的自动质量控制.气象科技, 2006, 34(5):615-619. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200605025.htm
|
[22] |
何彩芬, 黄旋旋, 丁烨毅, 等.宁波非气象雷达回波的人工智能识别及滤波.应用气象学报, 2007, 18(6):856-864. doi: 10.11898/1001-7313.200706129
|
[23] |
杨川, 刘黎平, 胡志群, 等.C波段多普勒雷达双PRF模式速度混淆区识别和处理方法研究.气象学报, 2012, 70(4):875-886. doi: 10.11676/qxxb2012.073
|