Li Yansong, Xu Zhifang, Fan Guangzhou, et al. Quality control for shipborne observations of sea level pressure. J Appl Meteor Sci, 2014, 25(2): 222-231.
Citation: Li Yansong, Xu Zhifang, Fan Guangzhou, et al. Quality control for shipborne observations of sea level pressure. J Appl Meteor Sci, 2014, 25(2): 222-231.

Quality Control for Shipborne Observations of Sea Level Pressure

  • Received Date: 2013-02-04
  • Rev Recd Date: 2014-01-08
  • Publish Date: 2014-03-31
  • With the rapid development of numerical prediction model, kinds of observations play an important role, among which the shipborne observations show great importance. In order to ensure the quality of shipborne observations and its positive contribution in numerical model, according to the temporal and spatial distribution characteristics of shipborne observations, a quality control scheme for sea level pressure data is set up consisting of element extreme range checking, eliminating the missing and redundant data, background field consistency checking, deciding the blacklist of observation stations, quality control method for blacklist data and so on. The scheme is developed based on the contrast analysis results between the observations and the T639 analysis field (0.28125°×0.28125°) in January and July of 2011, and it's also applied to the data of February and June of 2011.Shipborne observations consist of the data from oceanographic research vessel and unmanned automatic buoy station, the highest density of data is found at mid-and low-latitude ocean of the Northern Hemisphere, and the number of observation reports are fluctuating with time unsteadily. Missing observations and data redundancy are common cases, which affect the effectiveness of some quality control methods such as time consistency check and space consistency check, but the background field consistency check could avoid these disadvantages. The amount of sea level pressure data is the largest among all observed elements, but the missing data ratio and redundant data ratio both reach up to 50% and needs pre-processing. Blacklist data quality control scheme include the data elimination of blacklist station and quality control of residual blacklist data. The scheme can identify and eliminate the blacklist data accurately, as well as establish the blacklist of observation stations, which is beneficial to the lookup and maintenance work. Due to the altitude difference between the observation terrain and the model terrain in the Five Lakes and Great Slave Lake areas, background field data must be corrected through background consistency checking, and the double weighted average correction method can effectively eliminate the systemic deviation between observations and model outputs, thereby avoiding the errors in data quality control. Quality control results are proved to be correct and reasonable by the verification of case analysis and data rejection percentage of every quality control steps, and the quality control scheme also has a favorable application foreground in providing reliable initial field for data assimilation work.
  • Fig. 1  The number of shipborne sea level pressure data after the data pre-processing in January (a) and July (b) of 2011

    Fig. 2  The scatterplot for the shipborne sea level pressure data after pre-processing and background field in January 2011

    Fig. 3  Pressure observations in January 2011 of Station 21915(a) and Station 41972(b)

    Fig. 4  The scatterplot for the shipborne sea level pressure data after eliminating observation reports of blacklist stations and backgound field (grey dots represent the eliminated data)

    (a) January 2011, (b) July 2011

    Fig. 5  The scatterplot for shipborne sea level pressure data after the quality control of residual data and background field (grey dots represent the questionable data) (a) January 2011, (b) July 2011

    Fig. 6  The observation and the background pressure before and after correction for Station WUW21 in July 2011

    Fig. 7  The scatterplot for shipborne sea level pressure and the corrected background field

    (a) January 2011, (b) July 2011

    Fig. 8  The scatterplot for shipborne sea level pressure data after quality control and background field (grey dots represent the questionable data)

    (a) February 2011, (b) June 2011, (c) August 2011

    Table  1  The questionable data in January and July of 2011

    参数 2011年1月可疑资料量/% 2011年7月可疑资料量/%
    | Zscore| > 4 1.335 1.407
    | Zscore| > 5 0.877 1.009
    | Zscore| > 6 0.636 0.788
    DownLoad: Download CSV

    Table  2  The elimination rate of data pre-processing and other quality control schemes (unit:%)

    质量控制方法 1月 2月 6月 7月 8月
    资料预处理 50.379 50.440 53.141 52.220 51.863
    极值检查 0.006 0.004 0.012 0.003 0.017
    黑名单资料查找 0.124 0.071 0.160 0.093 0.206
    一致性检验 0.877 0.746 0.873 1.009 1.165
    DownLoad: Download CSV
  • [1]
    郭丰义, 张冬生.船舶海面观测资料的质量控制方法研究.海洋通报, 1998, 17(4):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-HUTB199804009.htm
    [2]
    王伯民, 谢清华.船舶地面气象资料的整理和统计.海洋通报, 1980, 1:1-16. http://www.cnki.com.cn/Article/CJFDTOTAL-HUTB198001000.htm
    [3]
    潘锦嫦.利用船舶报的资料分析海区波 (风) 次的方法讨论.中国海洋平台, 1996, 11(4):160-164.
    [4]
    王可光, 张建华, 王彩欣.西北太平洋常规SST资料的客观分析方法研究 (Ⅰ.旬的平均船舶报资料分析).海洋预报, 2000, 17(4):52-59. doi:  10.11737/j.issn.1003-0239.2000.04.009
    [5]
    陈上及, 马继瑞.海洋数据处理分析方法及应用.北京:海洋出版社, 1991:1-62.
    [6]
    朱江, 徐启春, 王赐震, 等.海温数值预报资料同化实验Ⅰ.客观分析的最优插值法试验.海洋学报, 1995, 17(6):9-19. http://www.cnki.com.cn/Article/CJFDTOTAL-SEAC506.001.htm
    [7]
    Richard W R.A real-time global sea surface temperature analysis.J Climate, 1988, 1:75-86. doi:  10.1175/1520-0442(1988)001<0075:ARTGSS>2.0.CO;2
    [8]
    Seaman R S.Quality control of Australian sea-level pressure observations.Australian Meteorological Magazine, 1999, 48(2):123-131.
    [9]
    陶士伟, 郝民, 赵琳娜.AMDAR观测资料分析及质量控制.气象, 2009, 35(12):65-73. doi:  10.7519/j.issn.1000-0526.2009.12.009
    [10]
    Dean V, Mahrt L.Quality control and flux sampling problems for tower and aircraft data.J Atmosp Ocean Technol, 1997, 14:512-526. doi:  10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2
    [11]
    Lorenc A.Analysis methods for numerical weather prediction.Q J R Metorol Soc, 1986, 112L:1177-1194. http://www.doc88.com/p-714689140224.html
    [12]
    张强, 郭发辉, 许松.全球地面天气报资料质量控制和数据集特征分析.应用气象学报, 2004, 15(增刊):121-127. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2004S1017.htm
    [13]
    周尚河.全国高空资料质量控制和建库方法的研究.应用气象学报, 2000, 11(3):364-370. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000353&flag=1
    [14]
    师春香, 刘玉洁.国外部分卫星产品质量评价和质量控制方法.应用气象学报, 2004, 15(增刊):142-151. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2004S1020.htm
    [15]
    封秀燕, 何志军, 王荷平, 等.自动气象站实时资料质量控制开放式平台设计.应用气象学报, 2010, 21(4):506-512. doi:  10.11898/1001-7313.20100415
    [16]
    李铁, 邹立尧, 国世友.东北地区低温气象资料数据集及其质量控制.应用气象学报, 2004, 15(增刊):164-167. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2004S1023.htm
    [17]
    王伯民.基本气象资料质量控制综合判别法的研究.应用气象学报, 2004, 15(增刊):50-59. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2004S1008.htm
    [18]
    王海军, 刘莹.综合一致性质量控制方法及其在气温中的应用.应用气象学报, 2012, 23(1):69-76. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120108&flag=1
    [19]
    Ingleby N B.Assimilation of station level pressure and errors in station height.Wea Forecasting, 1995, 10:172-182. doi:  10.1175/1520-0434(1995)010<0172:AOSLPA>2.0.CO;2
    [20]
    王新华, 罗四维, 刘小宁, 等.国家级地面自动站A文件质量控制方法及软件开发.气象, 2006, 32(3):107-112. doi:  10.7519/j.issn.1000-0526.2006.03.017
    [21]
    邹晓蕾.资料同化理论和应用 (上).北京:气象出版社, 2009:53-59.
    [22]
    Zou X, Zeng Zhen.A quality control procedure for GPS radio occultation data.J Geophys Res, 2006, 111, D02112, doi: 10.1029/2005JD005846.
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(2)

    Article views (3771) PDF downloads(1562) Cited by()
    • Received : 2013-02-04
    • Accepted : 2014-01-08
    • Published : 2014-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint