Zhou Fangcong, Zhang Yijun, Lü Weitao, et al. Characteristic analysis of continuing current process and M-component in artificially triggered lightning. J Appl Meteor Sci, 2014, 25(3): 330-338.
Citation: Zhou Fangcong, Zhang Yijun, Lü Weitao, et al. Characteristic analysis of continuing current process and M-component in artificially triggered lightning. J Appl Meteor Sci, 2014, 25(3): 330-338.

Characteristic Analysis of Continuing Current Process and M-component in Artificially Triggered Lightning

  • Received Date: 2013-07-30
  • Rev Recd Date: 2014-03-28
  • Publish Date: 2014-05-31
  • The continuing current (CC) process of cloud-to-ground lightning is a discharge process in which charges continuously transfer to ground along the lightning channel after return stroke. The magnitude of CC is small, but the duration of CC is commonly long, so CC often causes lightning disaster. It's very hard to get current data due to the randomness of lightning. Artificially triggered lightning, in which the time and location of triggered lightning can be controlled, is an effective way to measure current of lightning. Artificially trigged lightning is different from nature lightning which only has CC after return stroke, yet artificially trigged lightning has CC and initial continuous current (ICC) process both. Only the CC is analyzed using simultaneous observations of current, electric field change and chnnel luminosity by coaxial shunt, fast and slow antenna, and high-speed camera in Guangzhou Field Experiment Site for Lightning Research and Testing, Conghua, Guangdong, China. Then, photoelectric character and characteristic parameters of 14 CC and 43 M-components after return strokes of triggered lightning observed in summer in 2008 and 2011 are analyzed. The relationship between some characteristic parameters of CC and M-component is analyzed, too.The current waveforms of CC after return strokes are continuous and change slowly. Usually, there are current pulses ranging in size superimposed on CC waveforms. The slow electric field waveforms of CC are slowly changing, too. The lightning channel below the cloud is always luminescent during CC. The current waveforms, fast and slow electric field waveforms and channel luminosity variation waveforms of M-components are approximate symmetrical. The geometric mean of duration, charge transferred to ground, average current and action integral for CC are 22 ms, 6.0 C, 273 A, 4187 A2s, respectively. The geometric mean of magnitude, charge transferred, half peak width, rise time (10%-90%), duration, preceding CC level, inter-pulse interval, action integral for M-components are 409 A, 205 mC, 520 μs, 305 μs, 1.6 ms, 310 A, 6.5 ms, 465 A2s, respectively. There are very remarkable positive correlations between the duration of continuing current and number of M-components, and between the duration of continuing current and inter-pulse interval of M-components. The correlation coefficients are 0.83 and 0.75, and both pass the significant verification of 0.01 level.
  • Fig. 1  The waveforms of continuing current in triggered lightning

    (a) current waveform, (b) fast electric field waveform, (c) slow electric field waveform, (d) channel luminosity variation waveform

    Fig. 2  The waveforms of M-component

    (a) current waveform, (b) fast electric field waveform, (c) slow electric field waveform, (d) channel luminosity variation waveform

    Fig. 3  The high-speed video images of M-component (the time interval of images is 0.2 ms)

    Fig. 4  Distributions of characteristic parameters of M-component

    (a) amplitude (IM), (b) charge transferred to ground (QM), (c) half-peak width (IH), (d)10%-90% rise time on wave front (TR), (e) duration (TCC), (f) action integral, (g) current level immediately preceding the M-component (IC), (h) interval between successive M-components (TI)

    Table  1  Characteristic parameters of continuing current in triggered lightning

    闪电编号 回击序号 TCC/ms QCC/C Imean/A 比能量/A2s
    T200803 2 4 1.1 282 760
    T200803 4 3 1.5 487 2039
    T200803 5 4 3.3 837 10377
    T200803 6 7 4.8 683 8687
    T200803 7 307 21.0 69 8486
    T200803 8 18 15.6 866 30213
    T201102 1 27 5.1 189 2585
    T201105 1 3 0.3 107 70
    T201107 1 249 52.3 210 15362
    T201108 4 3 0.5 153 162
    T201108 6 591 79.4 135 13728
    T201108 7 27 17.8 667 45291
    T201108 8 36 11.0 307 8642
    T201110 1 99 15.0 153 5875
    DownLoad: Download CSV

    Table  2  Comparison of continuing current duration in triggered lightning with results of nature lightning

    地点 闪电类型 长连续电流持续时间几何平均/ms 短连续电流持续时间几何平均/ms 连续电流持续时间算术平均/ms
    广州从化 负极性触发闪电 259 26 98
    广州从化[23] 负极性自然地闪 235* 19* 21*
    甘肃中川[7] 正极性自然地闪 65.3
    负极性自然地闪 96.2
    广州从化[7] 正极性自然地闪 86
    负极性自然地闪 162.7
    北京[8] 正极性自然地闪 113
    美国佛罗里达[5] 负极性自然地闪 115 23
    注:*指自然地闪继后回击的连续电流过程的数值。
    DownLoad: Download CSV

    Table  3  Comparison of M-component parameters in this paper with other results

    成果来源 样本量 IM/A QM/mc TR/μs TH/μs TCC/ms TI/ms IC/A
    本研究 43 409 205 305 520 1.6 6.5 310
    赵阳等[16] 33 203 241 318 1.1 2.0
    Thottappillil等[13] 142 117 129 422 816 2.1 4.9 177
    DownLoad: Download CSV

    Table  4  Correlation coefficients of continuing current parameters and M-component parameters

    特征参数 N IM QM TH TR TM 比能量 IC TI
    TCC 0.83 -0.39 -0.25 0.49 0.48 0.45 -0.34 -0.34 0.75
    QCC 0.84 -0.39 -0.16 0.65 0.65 0.61 -0.27 -0.35 0.92
    Imean -0.38 0.80 0.77 -0.23 -0.17 -0.41 0.84 0.78 -0.27
    比能量 0.15 0.13 0.55 0.45 0.55 0.20 0.38 0.20 0.04
    DownLoad: Download CSV
  • [1]
    王道洪, 郄秀书, 郭昌明.雷电与人工引雷.上海:上海交通大学出版社, 2000:131-133.
    [2]
    Rakov V A, Uman M A.Lightning Physics and Effects.Cambridge:Cambridge University Press, 2003.
    [3]
    Hagenguth J H, Anderson J G.Lightning to the Empire building Part Ⅲ.AIEE, 1952, 71(PtⅢ):641-649.
    [4]
    Kitagawa N, Brook M, Workman E J.Continuing currents in cloud-to-ground lightning discharges.J Geophys Res, 1962, 67(2):637-647. doi:  10.1029/JZ067i002p00637
    [5]
    Shindo T, Uman M A.Continuing current in negative cloud-to-ground lightning.J Geophys Res, 1989, 94(4):5189-5198.
    [6]
    Ballarotti M G, Saba M M F, Jr O P.High-speed camera observations of negative ground flashes on a millisecond-scale.Geophys Res Lett, 2005, 32, L23802, doi: 10.1029/2005GL023889.
    [7]
    张翠华, 张义军, 张广庶, 等.地闪连续电流特征的统计分析.高原气象, 2000, 19(3):371-378. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200003011.htm
    [8]
    张阳, 张义军, 孟青, 等.北京地区正地闪时间分布及波形特征.应用气象学报, 2010, 21(4):442-449. doi:  10.11898/1001-7313.20100407
    [9]
    Saba M M F, Jr O P, Ballarotti M G.Relation between lightning return stroke peak current and following continuing current.Geophys Res Lett, 2006, 33, L23807, doi: 10.1029/2006GL027455.
    [10]
    Brook M, Kitagawa N, Workman E J.Quantitative study of return strokes and continuing currents in lightning discharges to ground.J Geophys Res, 1962, 67(2), 649-659. doi:  10.1029/JZ067i002p00649
    [11]
    Malan D J, Collens H.Progressive Lightning, Ⅲ, the Fine Structure of Return Lightning Strokes.Proc R Soc A Math Phys Sci, 1937, 162:175-203. doi:  10.1098/rspa.1937.0175
    [12]
    Thottappillil R, Rakov V A, Uman M A.K and M changes in close lightning ground flashes in Florida.J Geophys Res, 1990, 95:18631-18640. doi:  10.1029/JD095iD11p18631
    [13]
    Thottappillil R, Goldberg J, Rakov V, et al.Properties of M components from currents measured at triggered lightning channel base.J Geophys Res, 1995, 100(12):25711-25720.
    [14]
    吕伟涛, 张义军, 周秀骥, 等.火箭触发闪电通道的亮度特征分析.应用气象学报, 2007, 65(6):983-993. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200706015.htm
    [15]
    Fisher R J, Schnetzer G H, Thottappillil R, et al.Parameters of triggered-lightning flashes in Florida and Alabama.J Geophys Res, 1993, 98:22887-22908. doi:  10.1029/93JD02293
    [16]
    赵阳, 郄秀书, 陈明理, 等.人工触发闪电中的M分量特征.高原气象, 2011, 30(2):508-517. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201102028.htm
    [17]
    张义军, 杨少杰, 吕伟涛, 等.2006—2011年广州人工触发闪电观测试验和应用.应用气象学报, 2012, 23(5):513-522. doi:  10.11898/1001-7313.20120501
    [18]
    李俊, 张义军, 吕伟涛, 等.一次多回击自然闪电的高速摄像观测.应用气象学报, 2008, 19(4):401-411. doi:  10.11898/1001-7313.20080403
    [19]
    肖桐, 张阳, 吕伟涛, 等.人工触发闪电M分量的电流与电磁场特征.应用气象学报, 2013, 24(4):446-454. doi:  10.11898/1001-7313.20130407
    [20]
    李俊, 吕伟涛, 张义军, 等.一次多分叉多接地的空中触发闪电过程.应用气象学报, 2010, 21(1):95-100. doi:  10.11898/1001-7313.20100113
    [21]
    蒋如斌, 郄秀书, 王彩霞, 等.峰值电流达几千安量级的闪电M分量放电特征及机理探讨.物理学报, 2011, 60(7):079201-1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201107130.htm
    [22]
    Rakov V, Thottappillil R, Uman M, et al.Mechanism of the lightning M component.J Geophys Res, 1995, 100(12):25701-25710.
    [23]
    张义军, 吕伟涛, 张阳, 等.广州地区地闪放电过程的观测及其特征分析.高电压技术, 2013, 39(2):383-392. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201302020.htm
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(4)

    Article views (4017) PDF downloads(766) Cited by()
    • Received : 2013-07-30
    • Accepted : 2014-03-28
    • Published : 2014-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint