Liang Xiao, Zheng Xiaogu, Dai Yongjiu, et al. A method of improving error covariances in EnKF and its application to data assimilation. J Appl Meteor Sci, 2014, 25(4): 397-405.
Citation: Liang Xiao, Zheng Xiaogu, Dai Yongjiu, et al. A method of improving error covariances in EnKF and its application to data assimilation. J Appl Meteor Sci, 2014, 25(4): 397-405.

A Method of Improving Error Covariances in EnKF and Its Application to Data Assimilation

  • Received Date: 2014-01-06
  • Rev Recd Date: 2014-05-05
  • Publish Date: 2014-07-31
  • In the ensemble Kalman filter (EnKF), the forecast error covariance matrix is estimated as the sampling covariance matrix of the forecast ensemble. However, previous studies suggest that the sampling error resulting from finite-size ensembles may make such estimations far from the true forecast error covariance, and finally degrade the performance of EnKF. A common way to address this problem is covariance inflation with a time-constant inflation factor. A time-dependent infiation approach on forecast error covariance matrix (i.e., MLE method) is developed based on the maximum likelihood estimation theory, so as to improve estimates of forecast error covariances. At Delgertsgot (DGS) Station in the Mongolian Plateau reference site, point observations of ground temperature and soil temperature at the depth of 10 cm are assimilated into the Common Land Model (CoLM) with a frequency of every 12 hours, using two assimilation algorithms (EnKF method and MLE method), in order to test the effectivity of MLE in practical assimilation. In this way, a soil temperature assimilation system is constructed on the point scale.Results indicate that MLE method performs better than EnKF method for ground temperature and soil temperatures at most depths (especially for soil temperatures at deeper depths). Moreover, considering differences between soil temperatures at shallower depths and those at deeper depths, different inflation factors are adopted to them when implementing MLE method. Compared to results of MLE using a single scalar inflation factor, it shows that multiple-factor inflation is able to alleviate the unreasonable inflation of soil temperatures at deeper depths and therefore get better assimilation results. In addition, the leaf area index (LAI) in the CoLM is updated dynamically by MODIS LAI products, and results derived using MODIS LAI are compared to those derived using LAI computed by experiential formula, so as to study the effect of the LAI accuracy on simulated and assimilated soil temperatures. It shows that using MODIS LAI can get better simulation of soil temperature at depths of 0 cm and 3 cm, as well as more accurate assimilation of soil temperature at most depths.The inflation factor is set to be variable in time, but constant in space. However, variables such as soil temperature and soil moisture behave quite differently at shallow surfaces and deep depths, and observations may be unevenly distributed in space in regional assimilation researches. Therefore, it is necessary to adopt different inflation factors to different variables or to the same variable at different locations. In the future, it is necessary to develop a time-and-space dependent inflation method and test its capability in real applications.

  • Fig. 1  The diurnal variation of observed, simulated and assimilated soil temperature at 0 cm (a) and 3 cm (b) averaged from 1 Sep to 30 Sep in 2003

    Fig. 2  The observed, simulated and assimilated soil temperature at 10 cm (a) and 40 cm (b) from 1 Sep to 30 Sep in 2003

    Fig. 3  Soil temperature at 40 cm (a) and 100 cm (b) assimilated by MLE1 and MLE2 from 1 Sep to 30 Sep in 2003

    Fig. 4  The observed, simulated and assimilated soil moisture at 3 cm from 1 Sep to 30 Sep in 2003

    Table  1  Root mean square error of the simulated and assimilated soil temperature from 1 Sep to 30 Sep in 2003(unit:K)

    方法土壤温度
    0 cm3 cm10 cm40 cm100 cm
    COLM模拟3.7053.7041.0683.61812.907
    EnKF3.6553.4850.6981.8364.217
    MLE13.3343.2150.7522.4105.574
    MLE23.1483.1680.6521.2893.493
    DownLoad: Download CSV
  • [1]
    Evensen G.Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics.J Geophys Res, 1994, 99(C5):10143-10162. doi:  10.1029/94JC00572
    [2]
    Burgers G, Leeuwen P J V, Evensen G.Analysis scheme in the Ensemble Kalman Filter.Mon Wea Rev, 1998, 126:1719-1724. doi:  10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
    [3]
    Evensen G.The ensemble Kalman filter:Theoretical formulation and practical implementation.Ocean Dynam, 2003, 53(4):343-367. doi:  10.1007/s10236-003-0036-9
    [4]
    Senegas J, Wackernagel H H, Rosenthal W, et al.Error covariance modeling in sequential data assimilation.Stoch Env Res Risk A, 2001, 15:65-86. doi:  10.1007/PL00009788
    [5]
    Daley R.Atmospheric Data Analysis.Cambridge:Cambridge University Press, 1991.
    [6]
    Kalnay E.Atmospheric Modeling, Data Assimilation, and Predictability.Cambridge:Cambridge University Press, 2002.
    [7]
    Anderson J L, Anderson S L.A Monte Carlo implementation of the non-linear filtering problem to produce ensemble assimilations and forecasts.Mon Wea Rev, 1999, 127:2741-2758. doi:  10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2
    [8]
    Constantinescu E M, Sandu A, Chai T, et al.Ensemble-based chemical data assimilation.I:General approach.Q J R Meteorol Soc, 2007, 133:1229-1243. doi:  10.1002/(ISSN)1477-870X
    [9]
    Dee D P.On-line estimation of error covariance parameters for atmospheric data assimilation.Mon Wea Rev, 1995, 123(4):1128-1145. doi:  10.1175/1520-0493(1995)123<1128:OLEOEC>2.0.CO;2
    [10]
    Dee D P, da Silva A M.Maximum-likelihood estimation of forecast and observation error covariance parameters.Part Ⅰ:Methodology.Mon Wea Rev, 1999, 127:1822-1834. doi:  10.1175/1520-0493(1999)127<1822:MLEOFA>2.0.CO;2
    [11]
    Dee D P, Gaspari G, Redder C, et al.Maximum-likelihood estimation of forecast and observation error covariance parameters.Part Ⅱ:Applications.Mon Wea Rev, 1999, 127:1835-1849. doi:  10.1175/1520-0493(1999)127<1835:MLEOFA>2.0.CO;2
    [12]
    Wang X, Bishop C H.A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes.J Atmos Sci, 2003, 60:1140-1158. doi:  10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2
    [13]
    Li H, Kalnay E, Miyoshi T.Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter.Q J R Meteorol Soc, 2009, 135(639):523-533. doi:  10.1002/qj.v135:639
    [14]
    Miyoshi T.The gaussian approach to adaptive covariance inflation and its implementation with the Local Ensemble Transform Kalman Filter.Mon Wea Rev, 2011, 139:1519-1535. doi:  10.1175/2010MWR3570.1
    [15]
    Zheng X G.An adaptive estimation of forecast error covariance parameters for Kalman filtering data assimilation.Adv Atmos Sci, 2009, 26:154-160. doi:  10.1007/s00376-009-0154-5
    [16]
    Liang X, Zheng X G, Zhang S P, et al.Maximum likelihood estimation of inflation factors on error covariance matrices for ensemble Kalman filter assimilation.Q J R Meteorol Soc, 2011, 138:263-273, doi: 10.1002/qj.912.
    [17]
    Huang C L, Li X, Lu L.Retrieving soil temperature profile by assimilating MODIS LST products with ensemble Kalman filter.Rem Sens Environ, 2008, 112:1320-1336. doi:  10.1016/j.rse.2007.03.028
    [18]
    Yang K, Koike T, Kaihotsu I, et al.Validation of a dual-pass microwave land data assimilation system for estimating surface soil moisture in semiarid regions.J Hydrometeorology, 2009, 10(3):780-793. doi:  10.1175/2008JHM1065.1
    [19]
    杨晓峰, 陆其峰, 杨忠东.基于AMSR-E土壤湿度产品的LIS同化试验.应用气象学报, 2013, 24(4):435-445. doi:  10.11898/1001-7313.20130406
    [20]
    吴统文, 宋连春, 刘向文, 等.国家气候中心短期气候预测模式系统业务化进展.应用气象学报, 2013, 24(5):533-543. doi:  10.11898/1001-7313.20130503
    [21]
    王莉, 黄嘉佑.Kalman滤波的试验应用研究.应用气象学报, 1999, 10(3):276-282. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990370&flag=1
    [22]
    赵晓琳, 朱国富, 李泽椿.基于TIGGE资料识别适应性观测敏感区的应用研究.应用气象学报, 2010, 21(4):405-415. doi:  10.11898/1001-7313.20100403
    [23]
    Whitaker J S, Hamill T H.Ensemble data assimilation without perturbed observations.Mon Wea Rev, 2002, 130:1913-1924. doi:  10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
    [24]
    Dai Y J, Zeng X B, Dickinson R E, et al.The common land model.Bull Amer Meteor Soc, 2003, 84:1013-1023. doi:  10.1175/BAMS-84-8-1013
    [25]
    孟春雷, 张朝林.路面气象数值预报模型及性能检验.应用气象学报, 2012, 23(4):451-458. doi:  10.11898/1001-7313.20120408
    [26]
    Koike T.Coordinated Enhanced Observing Period (CEOP)-An initial step for integrated global water cycle observation.World Meteorological Organization Bulletin, 2004, 53(2):115-121.
    [27]
    龚建东, 赵刚.全球资料同化中误差协方差三维结构的准确估计与应用:背景误差协方差调整与数值试验分析.气象学报, 2006, 64(6):669-682. doi:  10.11676/qxxb2006.065
    [28]
    曹小群, 黄思训, 张卫民, 等.区域三维变分同化中背景误差协方差的模拟.气象科学, 2008, 28(1):8-14. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200801004.htm
    [29]
    马旭林, 庄照荣, 薛纪善, 等.GRAPES非静力数值预报模式的三维变分资料同化系统的发展.气象学报, 2009, 67(1):50-60. doi:  10.11676/qxxb2009.006
    [30]
    王曼, 李华宏, 段旭, 等.WRF模式三维变分中背景误差协方差估计.应用气象学报, 2011, 22(4):482-492. doi:  10.11898/1001-7313.20110411
    [31]
    Jin R, Li X.Improving the estimation of hydrothermal state variables in the active layer of frozen ground by assimilating in situ observations and SSM/I data.Sci China Ser D:Earth Sci, 2009, 39(9):1220-1231. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JDXG200911007.htm
    [32]
    Anderson J L.Spatially and temporally varying adaptive covariance inflation for ensemble filters.Tellus, 2009, 61:72-83. doi:  10.1111/tea.2008.61.issue-1
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(1)

    Article views (4026) PDF downloads(1606) Cited by()
    • Received : 2014-01-06
    • Accepted : 2014-05-05
    • Published : 2014-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint