Wu Chong, Liu Liping, Wang Xudong, et al. The measurement influence of reflectivity factor caused by scanning mode from phased array radar. J Appl Meteor Sci, 2014, 25(4): 406-414.
Citation: Wu Chong, Liu Liping, Wang Xudong, et al. The measurement influence of reflectivity factor caused by scanning mode from phased array radar. J Appl Meteor Sci, 2014, 25(4): 406-414.

The Measurement Influence of Reflectivity Factor Caused by Scanning Mode from Phased Array Radar

  • Received Date: 2013-10-30
  • Rev Recd Date: 2014-04-08
  • Publish Date: 2014-07-31
  • The beam design of active phased array weather radar is flexible, and this variable beam width and multi-beam mode can satisfy the requirement of various tasks and get much higher temporal resolution than general weather radar. However, the performance of active phased array weather radar can be hardly kept consistent due to the massive digital T/R components, and any variations of antenna parameters between the beam direction and axis normal would be a huge challenge for radar calibration. The X-band phased-array weather radar (X-PAR) developed by State Key Laboratory of Severe Weather of Chinese Academy of Meteorological Sciences and Anhui Sun-create Electronic Co Ltd is tested for the first time from April to June in 2013. The X-PAR and C-band polarization weather radar (C-POL) are installed at the same site, so their observations provide reflectivity measure deviation information and correction scheme for radar debugging and calibration of antenna parameters.During the operation of X-PAR, 3 kinds of observing modes with different beam width are applied, each using different parameters in their radar equations of calibration algorithm. Observations from C-POL and X-PAR (fine mode) with single scanning beam, X-PAR (quick mode) with multi scanning beams and X-PAR (fine Mode) are contrasted in detail. In order to reduce the comparison bias, severe convection and attenuation should be avoided. Results from statistical analysis indicate that observations from each elevation of X-PAR (fine mode) is 3 dB higher than C-POL, the measurement deviation between quick mode and fine mode changes along 4° regularly, and is inconsistent in higher elevation. The deviation source of X-PAR (fine mode) and C-POL comes from differences between the antenna parameter and the effective cross section, and the fast mode is also influenced by beam pattern, gaining in different elevation. A correction scheme based on data statistics and fitting is proposed to decrease the bias within 1 dB. By the comparison through vertical structures, the dependability of the above method is testified, and the resolution of X-PAR is also higher than C-POL, which is significant for convective precipitation research.The actual performance of phased array antenna could not keep strictly consistent with theoretical value because of its complicated structure. The result suggests that antenna measurement and digital T/R test during the factory inspection and acceptance are very indispensable. In the future field experiments, a well-calibrated radar should be installed at the same position to correct the X-PAR observation bias.

  • Fig. 1  Beam distribution of X-PAR

    (a) FM, (b) GM, (c) QM

    Fig. 2  Reflectivity bias of X-PAR along elevation

    (a) from FM to C-POL, (b) from QM to FM

    Fig. 3  Comparison of beam profile

    (a) effective cross section of X-PAR and C-POL, (b) transmitting and resaving beam positions of X-PAR QM

    Fig. 4  Reflectivity bias of X-PAR between QM and FM along elevation

    (a) broaden beam correction for QM, (b) broaden beam and transmitting gain correction for QM

    Fig. 5  Vertical cross sections comparison by X-PAR and C-POL

    (a) FM, (b) QM, (c) C-POL

    Table  1  Parameters and beam patterns of X-PAR (FM/QM/GM)

    工作参数精细测量警戒搜索快速观测
    观测用时 (64点脉冲积累)150 s, 90°方位150 s, 360°方位30 s, 360°方位
    扫描策略单波束顺序扫描发射赋形波束14路接收发射展宽波束4路接收
    法向参数φt0=0.61°, φr0=0.88°
    Gt0=46 dB
    Gr0=44.4 dB
    φt0不定, φr0=0.88°
    Gt0不定, Gr0=44.4 dB
    φt0=4°, φr0=0.88°
    Gt0=37.8 dB, Gr0=44.4 dB
    发射俯仰φt0收发波束均以0.5°仰角的波位处开始, 以1°的步进角扫描至39.5°赋形波束覆盖0°至20°发射波束以2°仰角的波位处开始, 以4°为步进角扫描至38°
    接收俯仰φr014路接收波束分布同VCP114路接收波束分布与精细测量模式一致
    阵面夹角vt, vrvt=αt-10,vr=αt-10vt=αt-10,vr=αt-10vt=αt-10,vr=αt-10
    接收增益GrvGrv=Gr0·cosvr
    发射增益GtvGtv=Gt0·cosvtφt0=1.5°时约36 dB, 随仰角升高Gtv迅速减小, 在φt0=19.5°时约17 dBGtv=Gt0·cosvt
    波束宽度φvφv=φt0/cosvrφv=φr0/cosvrφv=φr0/cosvr
    DownLoad: Download CSV

    Table  2  Weather observations of X-PAR

    序号日期观测时段雷达及观测模式过程简单描述
    12013-05-2008:00—14:30X-PAR (FM),C-POL较大范围对流及稳定降水
    22013-05-2109:00—19:00X-PAR (FM),C-POL较大范围对流及稳定降水
    32013-05-2713:00—16:00X-PAR (FM),C-POL较小范围对流
    42013-05-2819:00—20:00X-PAR (FM/QM),C-POL较大范围稳定降水
    52013-05-2915:00—17:00X-PAR (FM/QM),C-POL较大范围对流
    62013-06-0315:00—18:00X-PAR (FM/QM),C-POL较小范围对流
    72013-06-0413:00—18:30X-PAR (FM/QM),较大范围稳定降水
    82013-06-0513:30—17:30X-PAR (FM/QM),C-POL较大范围对流
    92013-06-1013:00—18:00X-PAR (FM/QM),C-POL中等范围稳定降水
    DownLoad: Download CSV
  • [1]
    丁青兰, 刘黎平, 葛润生, 等.双线偏振多普勒雷达测量精度的理论分析.应用气象学报, 2003, 14(1):30-38. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030104&flag=1
    [2]
    葛润生, 朱晓燕, 姜海燕.提高多普勒天气雷达晴空探测能力的一种方法.应用气象学报, 2000, 11(3):257-263. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000340&flag=1
    [3]
    Zrnic D S, Kimpel J F, Forsyth D E, et al.Agile-beam phased array radar for weather observations.Bull Amer Meteor Soc, 2007, 88(11):1753-1766. doi:  10.1175/BAMS-88-11-1753
    [4]
    Weadon M, Heinselman P, Forsyth D, et al.Multifunction phased array radar.Bull Amer Meteor Soc, 2009, 90(3):385-389. doi:  10.1175/2008BAMS2666.1
    [5]
    Weber M E, Cho J Y N, Herd J S, et al.The next-generation multimission US surveillance radar network.Bull Amer Meteor Soc, 2007, 88(11):1739-1751. doi:  10.1175/BAMS-88-11-1739
    [6]
    Zhang G, Doviak R J, Zrnic D S, et al.Phased array radar polarimetry for weather sensing:A theoretical formulation for bias corrections.IEEE Trans Geosci Remote Sens, 2009, 47(11):3679-3689. doi:  10.1109/TGRS.2009.2029332
    [7]
    Heinselman P L, Priegnitz D L, Manross K L, et al.Rapid sampling of severe storms by the National Weather Radar Testbed Phased Array Radar.Wea Forecasting, 2008, 23(5):808-824. doi:  10.1175/2008WAF2007071.1
    [8]
    Yussouf N, Stensrud D J.Impact of phased-array radar observations over a short assimilation period:observing system simulation experiments using an ensemble Kalman filter.Mon Wea Rev, 2010, 138(2):517-538. doi:  10.1175/2009MWR2925.1
    [9]
    Emersic C, Heinselman P L, MacGorman D R, et al.Lightning activity in a hail-producing storm observed with phased-array radar.Mon Wea Rev, 2011, 139(6):1809-1825. doi:  10.1175/2010MWR3574.1
    [10]
    Wurman J, Dowell D, Richardson Y, et al.The second verification of the origins of rotation in tornadoes experiment:VORTEX2.Bull Amer Meteor Soc, 2012, 93(8):1147-1170. doi:  10.1175/BAMS-D-11-00010.1
    [11]
    Brown R A, Wood V T.Simulated vortex detection using a four-face phased-array Doppler radar.Wea Forecasting, 2012, 27(6):1598-1603. doi:  10.1175/WAF-D-12-00059.1
    [12]
    Isom B, Palmer R, Kelley R, et al.The atmospheric imaging radar:simultaneous volumetric observations using a phased array weather radar.J Atmos Ocean Technol, 2013, 30(4):655-675. doi:  10.1175/JTECH-D-12-00063.1
    [13]
    Zhang F, Snyder C, Sun J.Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter.Mon Wea Rev, 2004, 132(5):1238-1253. doi:  10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
    [14]
    Bluestein H B, French M M, PopStefanija I, et al.A mobile, phased-array Doppler radar for the study of severe convective storms.Bull Amer Meteor Soc, 2010, 91(5):579-600. doi:  10.1175/2009BAMS2914.1
    [15]
    高玉春.机载气象雷达探测系统总体关键技术研究.北京:北京邮电大学, 2009:32-35. http://cdmd.cnki.com.cn/Article/CDMD-10013-2009230805.htm
    [16]
    张志强, 刘黎平.相控阵技术在天气雷达中的初步应用.高原气象, 2011, 30(4):1102-1107. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201104028.htm
    [17]
    刘黎平, 葛润生.中国气象科学研究院雷达气象研究50年.应用气象学报, 2007, 17(6):682-689. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606117&flag=1
    [18]
    Skolnik M I, 王军.雷达手册.北京:电子工业出版社, 2003:480-536. http://www.cnki.com.cn/Article/CJFDTOTAL-DZJX201102004.htm
    [19]
    杨金红, 高玉春, 程明虎, 等.相控阵天气雷达波束特性.应用气象学报, 2009, 20(1):119-123. doi:  10.11898/1001-7313.20090116
    [20]
    潘新民, 柴秀梅, 崔柄俭, 等.CINRAD/SB雷达回波强度定标调校方法.应用气象学报, 2011, 21(6):739-746. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100611&flag=1
    [21]
    Zhang G, Li Y, Doviak R J, et al.Multipatterns of the national weather radar testbed mitigate clutter received via sidelobes.J Atmos Ocean Technol, 2011, 28(3):401-409. doi:  10.1175/2010JTECHA1453.1
    [22]
    张志强, 刘黎平.S波段相控阵天气雷达与新一代天气雷达探测云回波强度及结构误差的模拟分析.气象学报, 2011, 69(4):729-735. doi:  10.11676/qxxb2011.064
    [23]
    吴翀, 刘黎平, 张志强.S波段相控阵天气雷达与新一代天气多普勒天气雷达定量对比方法及其初步应用.气象学报, 2014, 72(2):390-401. doi:  10.11676/qxxb2014.021
    [24]
    Donaldson Jr R J.A demonstration of antenna beam errors in radar reflectivity patterns.J Appl Meteor, 1964, 3:611-623. doi:  10.1175/1520-0450(1964)003<0611:ADOABE>2.0.CO;2
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(2)

    Article views (3220) PDF downloads(1714) Cited by()
    • Received : 2013-10-30
    • Accepted : 2014-04-08
    • Published : 2014-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint