Yang Xinyi, Lü Weitao, Yang Jun, et al. Applications of 3 threshold methods to the lightning channel image recognition. J Appl Meteor Sci, 2014, 25(4): 427-435.
Citation: Yang Xinyi, Lü Weitao, Yang Jun, et al. Applications of 3 threshold methods to the lightning channel image recognition. J Appl Meteor Sci, 2014, 25(4): 427-435.

Applications of 3 Threshold Methods to the Lightning Channel Image Recognition

  • Received Date: 2013-11-06
  • Rev Recd Date: 2014-04-18
  • Publish Date: 2014-07-31
  • General digital cameras, camcorders as well as the BOYS camera specially developed for the lightning observation, are all important tools for lightning research. They are used to obtain the basic data for understanding geometry features of channels and main development processes of lightning. For a long time, extracting lightning channel coordinates from digital images is based on manual processing methods with the relatively low efficiency. With the development of the photoelectric techniques, more and more advanced optical devices are used in lightning observation, such as high-speed cameras and the Automatic Lightning Processing Feature Observation System (ALPS), and data obtained become much richer. How to automatically process these data and improve the efficiency of data extraction and analysis is an urgent need to be addressed.Considering the complexity of lightning discharges and various characteristics of the lightning channel, only one algorithm is not enough to obtain a satisfying recognition result in all situations. Therefore, 3 common threshold methods are applied jointly in the lightning channel recognition. Firstly, the impact of the uneven illumination is eliminated by subtracting the background and the contrast of the image is enhanced. Secondly, global adaptive threshold method, local adaptive threshold method or adaptive Canny operator method is applied for edge detection. And then, morphological and thinning processes are carried out to get the lightning channel represented by the continuous sequence of pixels. Considering different characteristics of the lightning channel digital image, selecting appropriate algorithm can ensure getting a clear edge information even including weak edges, guaranteeing a good recognition effect finally.Through experiments, it can be concluded that for the lightning channel with simple structure and relatively uniform brightness, all algorithms mentioned above can get a good recognition result, among which the global adaptive threshold method is simpler and more efficient. Local adaptive threshold method can calculate the threshold for different images universally. And for the low-contrast images with a smooth background, using adaptive Canny operator method can achieve a satisfactory recognition result.

  • Fig. 1  Algorithm flowchart

    Fig. 2  Image preprocessing results

    (a) the original image of the lightning channel, (b) background image, (c) the lightning channel image obtained by the frame difference method, (d) the enhanced lightning channel image

    Fig. 3  Results of the lightning channel recognition by three kinds of threshold methods

    (a) adaptive Canny operator method, (b) global adaptive threshold method, (c) local adaptive threshold method

    Fig. 4  Morphological processing result

    Fig. 5  The result of the morphological skeleton

    Fig. 6  Lightning channel recognition of Example 1

    (a) the original image of the lightning channel, (b) adaptive Canny operator method, (c) global adaptive threshold method, (d) local adaptive threshold method

    Fig. 7  The same as in Fig. 6, but for Example 2

    Fig. 8  The same as in Fig. 6, but for Example 3

    Fig. 9  Results of the morphological skeleton

    (a) Example 1, (b) Example 2, (c) Example 3

  • [1]
    王道洪, 郄秀书, 郭昌明.雷电与人工引雷.上海:上海交通大学出版社, 2000:1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [2]
    张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi:  10.11898/1001-7313.20060619
    [3]
    刘欣生, 肖庆复.人工引发雷电的静态摄影及特性分析.高原气象, 1998, 17(1):106-110. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX801.011.htm
    [4]
    张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi:  10.11898/1001-7313.20060504
    [5]
    李俊, 张义军, 吕伟涛, 等.一次多回击自然闪电的高速摄像观测.应用气象学报, 2008, 19(4):401-411. doi:  10.11898/1001-7313.20080403
    [6]
    张义军, 吕伟涛, 郑栋, 等.负地闪先导-回击过程的光学观测和分析.高电压技术, 2008, 34(10):2022-2028. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200810002.htm
    [7]
    王才伟, 刘欣生, 董万胜, 等.人工触发闪电通道的发光特征.高原气象, 1998, 17(1):10-23. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX801.001.htm
    [8]
    吕伟涛, 张义军, 周秀骥, 等.火箭触发闪电通道的亮度特征分析.气象学报, 2007, 65(6):983-993. doi:  10.11676/qxxb2007.093
    [9]
    孔祥贞, 郄秀书, 王才伟, 等.首次回击具有双接地点的地闪光学和电学特征的个例分析.高原气象, 2003, 22(3):259-266. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200303009.htm
    [10]
    Zhou Enwei, Lu Weitao, Zhang Yang, et al.Correlation analysis between the channel current and luminosity of initial continuous and continuing current processes in an artificially triggered lightning flash.Atmos Res, 2013, 129:79-89. https://www.researchgate.net/publication/254014307_Correlation_analysis_between_channel_current_and_luminosity_of_continuouscontinuing_current_process_in_an_artificially_triggered_lightning_flash
    [11]
    Lu Weitao, Zhang Yijun, Li Jun, et al.Optical observations on propagation characteristics of leaders in cloud-to-ground lightning flashes.Acta Meteor Sinica, 2008, 22(1):66-76. http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXXW200801007.htm
    [12]
    周恩伟.触发闪电放电过程的光电同步观测与分析.北京:中国科学技术大学, 2010. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [13]
    Otsu N.A threshold selection method from gray level histograms.IEEE Trans Systems, Man and Cybernetics, 1979, 9(1):62-66. doi:  10.1109/TSMC.1979.4310076
    [14]
    杨俊, 吕伟涛, 马颖, 等.基于局部阈值插值的地基云自动检测方法.气象学报, 2010, 68(6):1007-1017. doi:  10.11676/qxxb2010.095
    [15]
    梁光明, 孙即祥, 马琦, 等.Otsu算法在Canny算子中的应用.国防科技大学学报, 2003, 25(5):36-39. http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ200305009.htm
    [16]
    武斌, 张广庶, 王彦辉, 等.双接地负地闪VHF辐射源放电通道和光学通道的对比分析.高原气象, 2013, 32(2):519-527. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201302018.htm
    [17]
    杨俊, 吕伟涛, 马颖, 等.基于自适应阈值的地基云自动检测方法.应用气象学报, 2009, 20(6):713-720. doi:  10.11898/1001-7313.20090609
    [18]
    Canny J. A computational approach to edge detection.IEEE Trans Pattern Analysis and Machine Intelligence, 1986, 8(6):679-698.
    [19]
    Rafael C G, Richard E W.数字图像处理.阮秋琪, 译.上海:电子工业出版社, 2007:423-431. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [20]
    杨威, 郭科, 魏义坤.一种有效的基于八邻域查表的指纹图像细化算法.四川理工学院学报, 2008, 21(2):61-62. http://www.cnki.com.cn/Article/CJFDTOTAL-SCQX200802019.htm
    [21]
    高太长, 刘磊, 赵世军, 等.全天空测云技术现状及进展.应用气象学报, 2010, 21(1):101-106. doi:  10.11898/1001-7313.20100114
    [22]
    朱彪, 杨俊, 吕伟涛, 等.基于KNN的地基可见光云图分类方法.应用气象学报, 2012, 23(6):722-727. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120609&flag=1
  • 加载中
  • -->

Catalog

    Figures(9)

    Article views (2853) PDF downloads(1654) Cited by()
    • Received : 2013-11-06
    • Accepted : 2014-04-18
    • Published : 2014-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint