Guo Yang, Lu Naimeng, Gu Songyan, et al. Radiometric characteristics of FY-3C microwave humidity and temperature sounder. J Appl Meteor Sci, 2014, 25(4): 436-444.
Citation: Guo Yang, Lu Naimeng, Gu Songyan, et al. Radiometric characteristics of FY-3C microwave humidity and temperature sounder. J Appl Meteor Sci, 2014, 25(4): 436-444.

Radiometric Characteristics of FY-3C Microwave Humidity and Temperature Sounder

  • Received Date: 2013-08-27
  • Rev Recd Date: 2014-04-08
  • Publish Date: 2014-07-31
  • The microwave humidity sounder (MWHS) is a five channel microwave radiometer in the range of 150-191 GHz onboard FY-3A and FY-3B. FY-3A and FY-3B are successfully launched in 2008 and 2010, respectively. The next generation of MWHS is a microwave humidity and temperature sounder. This sensor is developed to fly on the third satellite of new generation polar orbit meteorological satellite of China (FY-3C) is launched in September 2013.The microwave humidity and temperature sounder has 15 channels in the range of 89-191 GHz. Eight temperature sounding channels with central frequency of 118.75 GHz oxygen gas line and five humidity sounding channels with central frequency of 183.31 GHz water vapor line. Two window channels center at 89 GHz and 150 GHz. 118 GHz channel is first used to detect atmosphere on current operational satellite. Channels in the oxygen band are at around 54 GHz used by AMSU-A (advanced microwave sounding unit-A) and ATMS (advanced technology microwave sounder). Channels in the next oxygen absorption band are at around 118.75 GHz, which can well detect atmosphere temperature in the lower troposphere. The temperature sounding channels around 118.75 GHz detect the atmosphere temperature from 900 hPa to 25 hPa. The microwave humidity and temperature sounder adds two humidity sounding channels compared with MWHS that can obtain fine vertical distribution structure of atmosphere humidity.In order to determine the radiometric performance and the on-orbit use of the microwave humidity and temperature sounder, an extensive test is performed before launch. The microwave humidity and temperature sounder is placed in a thermal-vacuum chamber where the cold and earth targets are installed at fixed position. The instrument temperature is controlled at 5℃, 15℃ and 25℃ which is expected in orbit. The temperature of earth target maintains from 95 K to 330 K and space target is controlled at 95 K. Temperatures of these whole targets are measured by PRT (platinum resistance thermometer) and the temperature measurement accuracy is better than 0.1 K. The test database include counts of internal blackbody, earth and cold targets are obtained by the new microwave radiometer and the temperature measured by PRT.The sounder is calibrated with the thermal-vacuum chamber test method, and test data are quantitatively analyzed. Results for noise equivalent differential temperatures of fifteen channels show that all fifteen channel measured sensitivities meet requirements of indicators. Noise equivalent differential temperatures of humidity channels are all below 0.5 K which are also at the same level of indicators from ATMS. The channels around 118.75 GHz except channel 2 are all below 1 K, and that means observations from these channels used for temperature retrieval are well. Because the narrow bandwidth of channel 2, the noise equivalent differential temperature of this channel is about 1.7 K that maybe affects retrieval precision. Correlations between all channels are independent. After correcting all biases, the calibration accuracy is well below 1.12 K. Calibration results of microwave humidity and temperature sounder are stability for each channel. The radiometric characteristic analysis of all channels provide useful reference for in-orbit application of the new microwave radiometer sounder on FY-3C.

  • Fig. 1  Facility for thermal vacuum test of the microwave humidity and temperature sounder

    Fig. 2  PRT temperature distribution of 89/118 GHz (a) and 150/183 GHz (b) warm target

    Fig. 3  Accordance analysis of warm, cold and variable target view in scan lines

    (a)89/118 GHz, (b)150/183 GHz

    Fig. 4  The calibration bias distribution of the microwave humidity and temperature sounder

    Fig. 5  The variation of ΔNet with the number of scan lines included in the average windows

    Table  1  The microwave humidity and temperature sounder channel characteristics

    序号中心频率/GHz极化带宽/MHz主波束宽度主波束效率
    189V15002.0°>92%
    2118.75±0.08H202.0°>92%
    3118.75±0.2H1002.0°>92%
    4118.75±0.3H1652.0°>92%
    5118.75±0.8H2002.0°>92%
    6118.75±1.1H2002.0°>92%
    7118.75±2.5H2002.0°>92%
    8118.75±3.0H10002.0°>92%
    9118.75±5.0H20002.0°>92%
    10150V15001.1°>95%
    11183.31±1.0H5001.1°>95%
    12183.31±1.8H7001.1°>95%
    13183.31±3.0H10001.1°>95%
    14183.31±4.5H20001.1°>95%
    15183.31±7.0H20001.1°>95%
    DownLoad: Download CSV

    Table  2  Max bias of brightness temperature after nonlinear correction

    通道号各仪器温度下的最大亮温偏差/K
    5℃15℃25℃
    10.330.230.20
    20.400.500.24
    30.140.130.10
    40.170.230.15
    50.200.090.16
    60.140.170.16
    70.160.190.13
    80.180.230.13
    90.150.160.15
    100.170.240.17
    110.140.250.08
    120.140.130.12
    130.170.270.19
    140.190.290.35
    150.280.190.15
    DownLoad: Download CSV

    Table  3  Radiometric sensitivity values for the microwave humidity and temperature sounder

    通道号灵敏度指标/K各仪器温度下的灵敏度/K
    5℃15℃25℃
    11.00.2260.3010.257
    23.61.7901.7631.663
    32.00.6790.7010.686
    41.60.5480.5910.568
    51.60.6350.4750.485
    61.60.5350.5190.470
    71.60.5380.5440.511
    81.00.3100.2810.306
    91.00.4210.4050.304
    101.00.2960.3070.289
    111.00.4560.3600.393
    121.00.3710.2840.350
    131.00.2310.2660.250
    141.00.2870.2400.266
    151.00.2820.3090.249
    DownLoad: Download CSV

    Table  4  Correlation maxrtix for the microwave humidity and temperature sounder

    通道号123456789101112131415
    110.0910.0500.005-0.0890.049-0.103-0.043-0.0090.1010.1160.040-0.042-0.135-0.016
    20.0911-0.0830.0010.036-0.0160.085-0.190-0.015-0.0240.105-0.0010.039-0.029-0.004
    30.050-0.08310.1600.019-0.0420.1330.0730.1140.065-0.0600.013-0.086-0.121-0.079
    40.0050.0010.16010.0150.0740.0360.08200.0160.041-0.158-0.0030-0.034
    5-0.0890.0360.0190.01510.0590.0370.0120.0510.024-0.033-0.0420.023-0.054-0.106
    60.049-0.016-0.0420.0740.05910.0110.1040.078-0.109-0.087-0.100-0.033-0.033-0.099
    7-0.1030.0850.1330.0360.0370.01110.3430.190-0.144-0.031-0.042-0.055-0.0080.025
    8-0.043-0.1900.0730.0820.0120.1040.34310.554-0.083-0.059-0.077-0.1490.031-0.021
    9-0.009-0.0150.11400.0510.0780.1900.5541-0.020-0.0490.109-0.0520.0680.037
    100.101-0.0240.0650.0160.024-0.109-0.144-0.083-0.02010.0980.1230.0720.1110.028
    110.1160.105-0.0600.041-0.033-0.087-0.031-0.059-0.0490.09810.1490.2000.0880.075
    120.040-0.0010.013-0.158-0.042-0.100-0.042-0.0770.1090.1230.14910.3020.0730.184
    13-0.0420.039-0.086-0.0030.023-0.033-0.055-0.149-0.0520.0720.2000.30210.2440.274
    14-0.135-0.029-0.1210-0.054-0.033-0.0080.0310.0680.1110.0880.0730.24410.254
    15-0.016-0.004-0.079-0.034-0.106-0.0990.025-0.0210.0370.0280.0750.1840.2740.2541
    DownLoad: Download CSV
  • [1]
    Dong C, Yang J, Zhang W, et al.An overview of a new Chinese weather satellite FY-3A.Bull Amer Meteor Soc, 2009, 90:1531-1544. doi:  10.1175/2009BAMS2798.1
    [2]
    董立新, 杨虎, 张鹏, 等.FY-3A陆表温度反演及高温天气过程动态监测.应用气象学报, 2012, 23(2):214-222. doi:  10.11898/1001-7313.20120210
    [3]
    胡秀清, 黄意玢, 陆其峰, 等.利用FY-3A近红外资料反演水汽总量.应用气象学报, 2011, 22(1):46-56. doi:  10.11898/1001-7313.20110105
    [4]
    漆成莉, 董超华, 张文建, 等.FY-3A气象卫星红外分光计温度廓线模拟反演试验.应用气象学报, 2005, 16(5):576-582. doi:  10.11898/1001-7313.20050503
    [5]
    陆其峰.风云三号A星大气探测资料数据在欧洲中期天气预报中心的初步评价与同化研究.中国科学:地球科学, 2011, 41(7):890-894. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201107004.htm
    [6]
    何杰颖, 张升伟.FY-3A星MWHS反演中纬度和热带大气水汽.遥感学报, 2012, 16(3):562-578. doi:  10.11834/jrs.20120286
    [7]
    杜明斌, 杨引明, 杨玉华, 等.FY-3A微波资料偏差订正及台风路径预报应用.应用气象学报, 2012, 23(1):89-95. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120110&flag=1
    [8]
    崔林丽, 杨引明, 游然, 等.FY-3A/MWHS数据在定量降水估计中的应用研究.高原气象, 2012, 31(5):1439-1445. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201205028.htm
    [9]
    杨引明, 杜明斌, 张洁.FY-3A微波资料在"莫拉克"台风预报中的同化试验.热带气象学报, 2012, 28(1):23-30. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201201003.htm
    [10]
    任强, 董佩明, 薛纪善.台风数值预报中受云影响微波卫星资料的同化试验.应用气象学报, 2009, 20(2):137-146. doi:  10.11898/1001-7313.20090202
    [11]
    Weng F, Zou X, Yan B, et al.Applications of special sensor microwave imager and sounder (SSMIS) measurements in weather and climate studies.Adv Met S&T, 2012, 1(1):14-24.
    [12]
    Prigent C, Chevallier F, Karbou F, et al.AMSU-A land surface emissivity estimation for numerical weather prediction assimilation schemes.J Appl Meteor, 2005, 44(4):416-426. doi:  10.1175/JAM2218.1
    [13]
    Zhao Y, Wang B, Ji Z, et al.Improved track forecasting of a typhoon reaching landfall from four-dimensional variational data assimilation of AMSU-A retrieved data.J Geophys Res, 2005, 110(D14):D14101. http://adsabs.harvard.edu/abs/2005JGRD..11014101Z
    [14]
    Karbou F, Gérard E, Rabier F.Global 4DVAR assimilation and forecast experiments using AMSU observations over land.Part I:Impacts of various land surface emissivity parameterizations.Wea Forecasting, 2010, 25(1):5-19. doi:  10.1175/2009WAF2222243.1
    [15]
    JPL D-17005.Airs Project.Algorthm Theoretical Basis Document.Level 1b, Part 3:Microwave Instruments.Version 2.1.2000.
    [16]
    Saunders R W, Hewison T J, Stringer S J, et al.The radiometric characterization of AMSU-B.IEEE Transactions on Microwave Theory and Techniques, 1995, 43(4):760-771. doi:  10.1109/22.375222
    [17]
    NPP ATMS Science Team.NPOESS Preparatory Project Advanced Technology Microwave Sounder (ATMS) Postlaunch Calibration and Validation Plan.Pubilicly Accessible Version, 2007.
    [18]
    谷松岩, 王振占, 李靖, 等.风云三号A星微波湿度计主探测通道辐射特性.应用气象学报, 2010, 21(3):335-342. doi:  10.11898/1001-7313.20100309
    [19]
    Gu S, Guo Y, Wang Z, et al.Calibration analyses for sounding channels of MWHS onboard FY-3A.IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(12):4885-4891. doi:  10.1109/TGRS.2012.2214391
    [20]
    Wang Z, Li J, Zhang S, et al.Prelaunch Calibration of Microwave Humidity Sounder on China's FY-3A Meteorological Satellite.Geoscience and Remote Sensing Letters, IEEE, 2011, 8(1):29-33. doi:  10.1109/LGRS.2010.2050676
    [21]
    吴雪宝, 漆成莉, 刘辉.风云三号卫星地面应用系统工程研发项目技术报告.北京:国家卫星气象中心, 2007. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [22]
    Rodgers C D.Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation.Reviews of Geophysics, 1976, 14(4):609-624. doi:  10.1029/RG014i004p00609
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(4)

    Article views (3612) PDF downloads(928) Cited by()
    • Received : 2013-08-27
    • Accepted : 2014-04-08
    • Published : 2014-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint