浮标号 | 纬度 | 经度 | 测风高度/m | 离岸距离/km |
46013 | 38.242°N | 123.301°W | 5 | 22 |
46014 | 39.235°N | 123.974°W | 5 | 17 |
46027 | 41.850°N | 124.381°W | 5 | 13 |
46028 | 35.741°N | 121.884°W | 5 | 41 |
46041 | 47.349°N | 124.708°W | 5 | 34 |
46042 | 36.785°N | 122.469°W | 5 | 35 |
46086 | 32.491°N | 118.034°W | 5 | 85 |
Citation: | Xie Xiaoping, Wei Jiansu, Huang Liang. Evaluation of ASCAT coastal wind product using nearshore buoy data. J Appl Meteor Sci, 2014, 25(4): 445-453. |
The new scatterometer advanced scatterometer (ASCAT) on board MetOp-A satellite provides surface wind speed and direction over global ocean. Providing accurate nearshore wind data from satellites is challenging because satellite data are unavailable very close to shore due to the contaminating effect of the land. Besides, land-sea breezes and shore topography produce small space scale and time-scale wind variations that can be smoothed by the satellite's space averaging and aliased by the satellite's twice-a-day sampling. The complexity of nearshore winds is one of the prime causes that the regions are so important. For example, over one-third of the total marine fish catch occurs within nearshore zone.The accuracy of ASCAT coastal wind product is determined through various comparisons with buoys. The nearshore buoys used in the comparisons locate in US West Coast and China Coast. As the time interval of US West Coast buoy wind is 10-minute interval and the spatial resolution of ASCAT wind product is 12.5 km, a scatterometer wind and a buoy wind measurement are considered to be collocated if the distance between the wind vector cell center and the buoy location is less than 12.5 km and if the acquisition time difference is less than 5 minutes in US West Coast. As the time interval of China Coast buoy wind is 1 hour, the acquisition time difference is less than 30 minutes in China Coast. The buoy winds at a given anemometer height are converted to 10 m neutral winds in order to enable a good comparison with the 10 m scatteromter winds. The time ranges of wind data used for comparison from US West Coast buoys and China Coast buoys are the whole year of 2012 and the first half year of 2012 individually.It shows that the accuracy of the wind speed of ASCAT product is high and the accuracy of the wind direction of ASCAT product is influenced by several factors, such as the distance from coast, wind speed and wind direction. The overall wind speed correlation coefficient between buoy data and ASCAT product is 0.94, and wind speed correlation coefficients between each buoy and ASCAT product are all above 0.9. The overall wind direction correlation coefficient between buoy and ASCAT product is 0.71, and the wind direction correlation coefficient between the nearest buoy and ASCAT product is only 0.55. Processing the satellite data by discarding observations recorded in light winds (below 3 m·s-1) can improve the accuracy of the ASCAT wind products by reducing the mean bias of wind direction from 21.89°to 11.83°, and the wind direction correlation coefficient increased from 0.71 to 0.84. In addition, the accuracy of the wind flow from land is low, while the accuracy of the wind flow from sea is higher. In most China nearshore regions, the applicability of ASCAT coastal wind product is good, but in Bohai Sea, the effect of topography on ASCAT coastal wind product is apparent.
Table 1 Information list of the NDBC buoys
浮标号 | 纬度 | 经度 | 测风高度/m | 离岸距离/km |
46013 | 38.242°N | 123.301°W | 5 | 22 |
46014 | 39.235°N | 123.974°W | 5 | 17 |
46027 | 41.850°N | 124.381°W | 5 | 13 |
46028 | 35.741°N | 121.884°W | 5 | 41 |
46041 | 47.349°N | 124.708°W | 5 | 34 |
46042 | 36.785°N | 122.469°W | 5 | 35 |
46086 | 32.491°N | 118.034°W | 5 | 85 |
Table 2 Information list of China nearshore buoys
浮标号 | 纬度 | 经度 | 测风高度/m | 离岸距离/km |
54558 | 39.25°N | 120.58°E | 10 | 57 |
54641 | 38.85°N | 118.55°E | 10 | 8 |
58573 | 29.75°N | 122.75°E | 10 | 34 |
58768 | 27.53°N | 121.40°E | 10 | 39 |
58951 | 25.50°N | 120.32°E | 10 | 45 |
59334 | 23.64°N | 118.20°E | 10 | 54 |
59515 | 22.33°N | 117.34°E | 10 | 110 |
59765 | 20.75°N | 111.66°E | 10 | 85 |
Table 3 Comparison between ASCAT coastal wind products and US West Coastal buoy wind observations
浮标号 | 匹配样本量 | 风速平均偏差/(m·s-1) | 风向平均偏差/(°) | 风速相关系数 | 风向相关系数 |
46013 | 298 | 0.82 | 22.69 | 0.97 | 0.78 |
46014 | 282 | 1.59 | 25.11 | 0.93 | 0.57 |
46027 | 178 | 2.14 | 31.72 | 0.90 | 0.55 |
46028 | 349 | 0.77 | 15.02 | 0.97 | 0.87 |
46041 | 334 | 0.92 | 25.70 | 0.96 | 0.67 |
46042 | 328 | 0.74 | 16.52 | 0.96 | 0.78 |
46086 | 354 | 0.68 | 21.86 | 0.94 | 0.74 |
Table 4 Comparison between ASCAT coastal wind products and US West Coastal buoy wind observations according to wind speed
类型 | 样本量 | 风速平均偏差/(m·s-1) | 风向平均偏差/(°) | 风速相关系数 | 风向相关系数 |
全部样本 | 2123 | 1.0 | 21.89 | 0.94 | 0.71 |
风速不大于3 m·s-1 | 548 | 1.15 | 50.8 | 0.26 | 0.39 |
风速大于3 m·s-1 | 1575 | 0.96 | 11.83 | 0.94 | 0.84 |
Table 5 Comparison between ASCAT coastal wind products and China nearshore buoy wind observations
浮标号 | 样本量 | 风速平均偏差/(m·s-1) | 风向平均偏差/(°) | 风速相关系数 | 风向相关系数 |
54558 | 204 | 1.33 | 136.10 | 0.94 | 0.06 |
54641 | 141 | 8.37 | 53.63 | 0.42 | 0.55 |
58573 | 274 | 2.48 | 36.27 | 0.87 | 0.77 |
58768 | 196 | 1.12 | 30.18 | 0.96 | 0.95 |
58951 | 173 | 1.27 | 38.04 | 0.97 | 0.78 |
59334 | 124 | 1.60 | 40.86 | 0.96 | 0.83 |
59515 | 137 | 1.15 | 26.92 | 0.98 | 0.93 |
59765 | 160 | 1.06 | 29.64 | 0.96 | 0.92 |
Table 6 Comparison result between ASCAT coastal wind products and China nearshore buoy wind observations according to wind speed
分类 | 样本量 | 风速平均偏差/(m·s-1) | 风向平均偏差/(°) | 风速相关系数 | 风向相关系数 |
全部样本 | 1409 | 1.70 | 32.73 | 0.92 | 0.63 |
风速不大于3 m·s-1 | 253 | 2.00 | 65.80 | 0.30 | 0.40 |
风速大于3 m·s-1 | 1156 | 1.55 | 18.20 | 0.93 | 0.73 |
[1] |
Naderi F, Freilich M, Long D.Spaceborne radar measurement of wind velocity over the ocean—An overview of the NSCAT scatterometer system.Proceedings of the IEEE, 1991, 79(6):850-866. doi: 10.1109/5.90163
|
[2] |
刘宇迪, 任景鹏, 周鑫.散射计风场的三维变分对海雾数值模拟的影响.应用气象学报, 2011, 22(4):472-481. doi: 10.11898/1001-7313.20110410
|
[3] |
Milliff R F, Large W G, Morzel J, et al.Ocean general circulation model sensitivity to forcing from scatterometer winds.J Geophys Res, 1999, 104(C5):11337-11358. doi: 10.1029/1998JC900045
|
[4] |
Liu W T.Progress in scatterometer application.Journal of Oceanography, 2002, 58(1):121-136. doi: 10.1023/A:1015832919110
|
[5] |
Chelton D B, Freilich M H, Sienkiewicz J M, et al.On the use of QuikSCAT scatterometer measurements of surface winds for marine weather prediction.Mon Wea Rev, 2006, 134(8):2055-2071. doi: 10.1175/MWR3179.1
|
[6] |
窦芳丽, 卢乃锰, 谷松岩.星载双频风场雷达热带气旋降雨区测风模拟.应用气象学报, 2012, 23(4):467-477. doi: 10.11898/1001-7313.20120410
|
[7] |
Chelton D B, Schlax M G, Freilich M H, et al.Satellite measurements reveal persistent small-scale features in ocean winds.Science, 2004, 303(5660):978-983. doi: 10.1126/science.1091901
|
[8] |
刘春霞, 何溪澄.QuikSCAT散射计矢量风统计特征及南海大风遥感分析.热带气象学报, 2003, 19(增刊Ⅰ):107-117. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX2003S1011.htm
|
[9] |
Bentamy A, Croize-Fillon D, Perigaud C.Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observations.Ocean Science, 2008, 4(4):265-274. doi: 10.5194/os-4-265-2008
|
[10] |
Figa-Saldana J, Wilson J J W, Attema E, et al.The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform:A follow on for European wind scatterometers.Canadian Journal of Remote Sensing, 2002, 28(3):404-412. doi: 10.5589/m02-035
|
[11] |
Verspeek J, Stoffelen A, Portabella M, et al.Validation and Calibration of ASCAT Using CMOD5.n.IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1):386-395. doi: 10.1109/TGRS.2009.2027896
|
[12] |
张春桂, 蔡义勇, 张加春.MODIS遥感数据在我国台湾海峡海雾监测中的应用.应用气象学报, 2009, 20(1):8-16. doi: 10.11898/1001-7313.20090102
|
[13] |
张春桂, 曾银东, 张星, 等.海洋叶绿素a浓度反演及其在赤潮监测中的应用.应用气象学报, 2007, 18(6):821-831. doi: 10.11898/1001-7313.200706124
|
[14] |
张晓虎.卫星监测台风信息处理系统.应用气象学报, 2003, 14(4):505-509. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030464&flag=1
|
[15] |
方宗义, 刘玉洁.卫星云参数处理方法和1991年云气候特征分析.应用气象学报, 1994, 5(2):135-142. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19940227&flag=1
|
[16] |
FAO.Yearbook of Fisheries Statistics:Catches and Landings.Rome:Food and Agriculture Organization of the United Nations, 1995:713.
|
[17] |
Halliwell G R, Allen J S.The large-scale coastal wind field along the west coast of North America, 1981-1982.J Geophys Res, 1987, 92(C2):1861-1884. doi: 10.1029/JC092iC02p01861
|
[18] |
Dorman C E, Winant C D.Buoy observations of the atmosphere along the west coast of the United States, 1981-1990.Journal of Geophysical Research:Oceans (1978-2012), 1995, 100(C8):16029-16044. doi: 10.1029/95JC00964
|
[19] |
Center N D B.Handbook of Automated Data Quality Control Checks and Procedures.Mississippi:NOAA, 2009:9-10.
|
[20] |
黄飞龙, 吕雪芹, 陈刚.海洋气象探测基地-浮标.海洋技术, 2012, 30(4):46-49. http://www.cnki.com.cn/Article/CJFDTOTAL-HYJS201104012.htm
|
[21] |
OSI SAF.ASCAT Wind Product User Manual Version 1.11.2012 :3-7.
|
[22] |
徐天真, 徐静琦, 楼顺里.海面风垂直分布的计算方法.海洋湖沼通报, 1988(4):1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-HYFB198804000.htm
|
[23] |
陈永利, 赵永平, 张必成, 等.海上不同高度风速换算关系的研究.海洋科学, 1989(3):27-31. http://www.cnki.com.cn/Article/CJFDTOTAL-HYKX198903004.htm
|
[24] |
Atlas R, Busalacchi A, Ghil M, et al.Global surface wind and flux fields from model assimilation of Seasat data.J Geophys Res, 1987, 92(C6):6477-6487. doi: 10.1029/JC092iC06p06477
|
[25] |
Portabella M, Stoffelen A.Scatterometer backscatter uncertainty due to wind variability.IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11):3356-3362. doi: 10.1109/TGRS.2006.877952
|