Yao Tong, Zhang Qiang, Yin Han. The annual variation and its influencing mechanism of surface roughness length of Yuzhong in semi-arid areas. J Appl Meteor Sci, 2014, 25(4): 454-462.
Citation: Yao Tong, Zhang Qiang, Yin Han. The annual variation and its influencing mechanism of surface roughness length of Yuzhong in semi-arid areas. J Appl Meteor Sci, 2014, 25(4): 454-462.

The Annual Variation and Its Influencing Mechanism of Surface Roughness Length of Yuzhong in Semi-arid Areas

  • Received Date: 2013-09-29
  • Rev Recd Date: 2014-05-06
  • Publish Date: 2014-07-31
  • Based on data observed at the Semi-arid Climate and Environment Observatory of Lanzhou University (SACOL) from June 2006 to December 2010, temporal characteristics of aerodynamic roughness length over the natural vegetation surface of Yuzhong are analyzed. Annual change characteristics of roughness length and influencing mechanisms in the southeast and northwest are analyzed, taking the impact of terrain, vegetation, precipitation and thermal conditions into account, and the fitting relationships between normalized roughness and time are given. It shows that for heterogeneous underlying surface, the difference of aerodynamic roughness length in different wind directions caused by undulating terrain and vegetation difference is very significant. According to the prevailing wind direction, two wind directions which are southeast and northwest are selected. Both magnitude and changing trends of roughness length of two selected wind directions are remarkable different. The averaged roughness length in southeast is 0.015 m, whose magnitude is equal to the roughness length over sparsely vegetated underlying surface like deteriorated grassland, while the averaged roughness length in northwest is 0.123 m, whose magnitude is equal to the roughness length over farmland underlying surface. To eliminate effects of the inter-annual variation of roughness length, the normalized roughness length is injected into the discussion. The time-distributing characteristics in two wind directions vary considerably, which can be considered showing opposite trends. The annual changing trend of roughness length in southeast decreases first and then increases, while it increases first and then decreases in northwest. And due to differences in terrain and vegetation, influencing mechanisms of the time variation of roughness length in the two wind directions are different. The annual variation trend of normalized roughness is consistent with the annual variation of atmospheric stability and the roughness length has a certain relationship with atmospheric stability in southeast due to the stunted sparse vegetation. While the annual variation trend of roughness length is consistent with the annual variation of precipitation and the roughness length has a good relationship with precipitation in northwest due to the impact of vegetation, and the vegetation is mainly effected by the precipitation. The time parametric relationship between normalized roughness and time in two directions can be described by a set of sinusoidal functions, and the related coefficient can reach 0.49 and 0.82, respectively.

  • Fig. 1  Observation environment (a) and topography (b) of SACOL Site

    Fig. 2  Monthly mean change (a) and monolithic annual variation (b) of aerodynamic roughness length in different wind direction intervals from Jun 2006 to Dec 2010

    Fig. 3  The averaged aerodynamic roughness length in different wind direction intervals (unit:m)

    Fig. 4  Variation of aerodynamic roughness length along with wind direction intervals in growing season and non-growing season (unit:m)

    Fig. 5  Wind frequency rose of SACOL Site

    Fig. 6  Annual variation of normalized aerodynamic roughness length and fits for relation between roughness length and time in two wind directions of southeast (a) and northwest (b)

    Fig. 7  Annual variations of stability (a) and precipitation (b)

    Fig. 8  Scatter plots of normalized aerodynamic roughness length in the southeast with stability (a) and normalized roughness length in the nrothwest with precipitation (b)

  • [1]
    史学丽.陆面过程模式研究简评.应用气象学报, 2001, 12(1):102-112. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010114&flag=1
    [2]
    Wang G Y, Huang J P, Guo W D, et al.Observation analysis of land-atmosphere interactions over the Loess Plateau of northwest China.J Geophys Res, 2010, 115, D00K17, doi: 10.1029/2009JD013372.
    [3]
    Irannejad P, Shao Y P.Description and validation of the atmosphere-land-surface interaction scheme (ALSIS) with HAPEX and Cabauw data.Global Planet Change, 1998, 19:87-114. doi:  10.1016/S0921-8181(98)00043-5
    [4]
    Shao Y P.Physics and Modeling of Wind Erosion.London:Kluwer Academic Publishers, 2000:99-100.
    [5]
    Monteith J L.Principles of Environmental Physics.London: Edward Arnold, 1973.
    [6]
    曹文俊.粗糙长度综述.气象, 1991, 17(4):45-47. doi:  10.7519/j.issn.1000-0526.1991.04.012
    [7]
    周艳莲, 孙晓敏, 朱治林, 等.几种不同下垫面地表粗糙度动态变化及其对通量机理模型模拟的影响.中国科学: D辑, 2006, 36(增刊I):244-254. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2006S1023.htm
    [8]
    朱彩英, 张仁华, 王劲峰, 等.运用SAR图像和TM热红外图像定量反演地表空气动力学粗糙度的二维分布.中国科学:D辑, 2004, 34(3):385-393. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200404011.htm
    [9]
    Tetsuya H, Michiaki S, Kazuo K.Regional roughness parameters and momentum fluxes over a complex area.J Appl Meteor, 1996, 35:2179-2190. doi:  10.1175/1520-0450(1996)035<2179:RRPAMF>2.0.CO;2
    [10]
    Schmid H P, Bunzli B.The influence of surface texture on the effective roughness length.Quart J Roy Meteor Soc, 1995, 121:1-21. doi:  10.1002/(ISSN)1477-870X
    [11]
    梅凡民, Rajot J, Alfaro S, 等.平坦沙地的空气动力学粗糙度变化及其物理意.自然科学进展, 2006, 16(3):325-330. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200603013.htm
    [12]
    贾立, 王介民, Massimo M.绿洲-沙淇符合地表条件下的局地和有效粗糙度.气象学报, 1999, 57(3):171-182. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB903.008.htm
    [13]
    Zhang Q, Zeng J, Yao T.Interaction of aerodynamic roughness length and windflow conditions and its parameterization over vegetation surface.Chinese Science Bulltin, 2012, 57(13):1559-1567. doi:  10.1007/s11434-012-5000-y
    [14]
    Zhang Q, Yao T, Yue P, et al.The influences of thermodynamic characteristics on aerodynamic roughness length over land surface.Acta Meteor Sinica, 2013, 27(2):249-262. doi:  10.1007/s13351-013-0209-5
    [15]
    Sud Y C, Smith W E.Influence of local land-surface processes on the Indian monsoon:A numerical study.J Climate Appl Meteor, 1985, 24(10):1015-1036. doi:  10.1175/1520-0450(1985)024<1015:IOLLSP>2.0.CO;2
    [16]
    Mwenderaa E J, Feyen J.Effects of tillage and rainfall on soil surface roughness and properties.Soil Technology, 1994, 7(1):93-103. doi:  10.1016/0933-3630(94)90010-8
    [17]
    冯健武, 刘辉志, 王雷, 等.半干旱区不同下垫面地表粗糙度和湍流通量整体输送系数变化特征.中国科学:D辑, 2012, 42(1):24-33. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201201004.htm
    [18]
    李宏宇, 张强, 史晋森, 等.黄土高原自然植被下垫面陆面物理参数研究.气象学报, 2010, 70(5):1137-1148. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX201010010007.htm
    [19]
    丹利, 谢明.基于MODIS资料的贵州植被叶面积指数的时空变化及其对气候的响应.气候与环境研究, 2009, 14(5):455-464. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200905002.htm
    [20]
    张文煜, 张宇, 陆晓静, 等.黄土高原半干旱区非均一下垫面粗糙度分析.高原气象, 2009, 28(4):763-768. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX201310010035.htm
    [21]
    Zhang Q, Huang R H, Tian H.The study on parameterization scheme of surface turbulent momentum and sensible over Gobi underlying surface.Adv Atmos Sci, 2003, 20(1):1-7. doi:  10.1007/BF03342045
    [22]
    高志球, 卞林根, 逯昌贵, 等.城市下垫面空气动力学参数的估算.应用气象学报, 2002, 13(增刊I):26-33. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2002S1002.htm
    [23]
    丁一汇.地表通量的计算问题.应用气象学报, 1997, 8(1):29-35. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX7S1.004.htm
    [24]
    赵志强, 郑乃廷.不同下垫面的大气边界层湍流扩散特征.应用气象学报, 1998, 9(4):478-484. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980470&flag=1
    [25]
    胡艳冰, 高志球, 沙文钰, 等.六种近地层湍流动量输送系数计算方案对比分析.应用气象学报, 2007, 18(3):407-411. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070366&flag=1
    [26]
    Huang J P, Zhang W, Zuo J Q, et al.An overview of the semi-arid climate and environment research observatory over the Loess Plateau.Adv Atmos Sci, 2008, 25(6):1-16. doi:  10.1007%2Fs00376-008-0906-7
    [27]
    张强, 李宏宇, 张立阳, 等.陇中黄土高原自然植被下垫面陆面过程及其参数对降水波动的气候响应.物理学报, 2013, 62(1):019201, doi: 10.7498/aps.62.019201.
    [28]
    孙照萱, 张强, 李宏宇. 黄土高原地区榆中陆面过程气候特征观测试验研究//第27届中国气象学会年会干旱半干旱区地气相互作用分会场论文集. 2010.
    [29]
    Stull R B.边界层气象学导论.杨长新, 译.北京:气象出版社, 1991:279-287. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [30]
    Blihco R G, Partheniades E.Turbulence characteristics in free surface flows over smooth and rough boundaries.J Hyd Res, 1971, 9:43-69. doi:  10.1080/00221687109500337
    [31]
    张宏昇, 陈家宜.非单一水平均匀下垫面空气动力学参数的确定.应用气象学报, 1997, 8(3):310-315. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19970344&flag=1
    [32]
    Zhou Y L, Sun X M, Zhang R H, et al.The Improvement and Validation of the Model for Retrieving the Effective Roughness Length on TM Pixel Scale//Proceeding of IGRASS.2005.
    [33]
    曾剑, 张强, 王胜. 中国北方不同气候区不同天气陆面过程区域特征差异//第27届中国气象学会年会干旱半干旱区地气相互作用分会场论文集. 2010.
  • 加载中
  • -->

Catalog

    Figures(8)

    Article views (2971) PDF downloads(1704) Cited by()
    • Received : 2013-09-29
    • Accepted : 2014-05-06
    • Published : 2014-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint