Yan Minhui, Yao Xiuping, Wang Lei, et al. Determining weight coefficients of meteorological service evaluation criteria with AHP. J Appl Meteor Sci, 2014, 25(4): 470-475.
Citation: Yan Minhui, Yao Xiuping, Wang Lei, et al. Determining weight coefficients of meteorological service evaluation criteria with AHP. J Appl Meteor Sci, 2014, 25(4): 470-475.

Determining Weight Coefficients of Meteorological Service Evaluation Criteria with AHP

  • Received Date: 2013-12-06
  • Rev Recd Date: 2014-04-29
  • Publish Date: 2014-07-31
  • With the rapid development of social economy in China, the demand for meteorological service keeps growing, and the evaluation for meteorological service satisfaction becomes more important. The Analytic Hierarchy Process (AHP) method is used to evaluate the meteorological service satisfaction objectively, and constructing judgment matrix of good consistency is the key to use AHP.Two scales of AHP are used to construct judgment matrix of good consistency, and then weight coefficients can be calculated and the meteorological service can be evaluated. In the assessment system of meteorological service, using overall evaluation of meteorological services as the target layer, the first-grade and the second-grade evaluation indicators are composed. With the survey data of public satisfaction to meteorological services of 2010, 1-9 methods of scale and 0.618 methods of scale in AHP are applied to establish the judgment matrices. It is found that for the judgment matrix with less than 5 evaluation indicators, 1-9 methods of scale can be used; but for the judgment matrix with 5 evaluation indicators or more, 0.618 methods of scale should be used to calculate coefficients. The method is used in processing survey data of 2011, and coefficients for the first-grade and the second-grade evaluation indicators are calculated rapidly. The main value changes between two years are compared. Among weight coefficients for the first-grade, the value of meteorological information service contents increases while the value of meteorological knowledge propaganda and popularization decreases, which illustrates that the public pays more attention to the meteorological service contents and the meteorological department has achieved certain results in the meteorological knowledge propaganda and popularization. There is no obvious tendency change among values of the second-grade evaluation indicators. All judgment matrices pass the comparison matrix consistency tests, proving that the principle of judgment matrix construction is reasonable, effective and useful.

  • Fig. 1  Hierarchical structure model of meteorological service evaluation system

    Table  1  Quantization and meaning of 9-scaling-value definaition

    标度值含义
    1两指标对某属性同等重要
    3两指标对某属性,一指标比另一指标稍微重要
    5两指标对某属性,一指标比另一指标明显重要
    7两指标对某属性,一指标比另一指标强烈重要
    9两指标对某属性,一指标比另一指标极端重要
    1/9两指标对某属性,一指标比另一指标极端次要
    1/7两指标对某属性,一指标比另一指标强烈次要
    1/5两指标对某属性,一指标比另一指标明显次要
    1/3两指标对某属性,一指标比另一指标稍微次要
    DownLoad: Download CSV

    Table  2  The third-order judgment matrix

    标度方法权重一致性检验
    9分位标度法0.3275,0.2599,0.4126通过
    0.618标度法0.3305,0.2815,0.3880通过
    DownLoad: Download CSV

    Table  3  The fourth-order judgment matrix

    标度方法权重一致性检验
    9分位标度法0.0801,0.2195,0.6623,0.0382通过
    0.618标度法0.1363, 0.2549, 0.5221, 0.0867通过
    DownLoad: Download CSV

    Table  4  Weight coefficients for the first-grade evaluation indicators

    一级评价指标2010年2011年
    气象服务信息内容0.32750.4302
    气象服务信息发布0.25990.2116
    气象知识宣传普及0.41260.3582
    DownLoad: Download CSV

    Table  5  The second-grade weight coefficients for meteorological service information content

    二级评价指标2010年2011年
    通俗性0.15240.1608
    实用性0.24630.2726
    准确性0.44700.5512
    表现形式0.05940.0098
    种类丰富性0.09500.0056
    DownLoad: Download CSV

    Table  6  The second-grade weight coefficients for meteorological service information diffusion

    二级评价指标2010年2011年
    及时性0.73060.7331
    渠道的多样性0.08100.0566
    获取的方便性0.18840.2103
    DownLoad: Download CSV

    Table  7  The second-grade weight coefficients for meteorological knowledge propaganda and popularization

    二级评价指标2010年2011年
    宣传普及渠道0.16330.1567
    可读性0.10130.1376
    趣味性0.05550.0723
    气象常识普及面0.18250.2114
    及时获取气象灾害防御知识0.49740.4220
    DownLoad: Download CSV
  • [1]
    Rahman S, FralrL C.A hierarchical approach to electric utility Planning.International Journal of Energy Resource, 1984, 8(2):185-196. doi:  10.1002/(ISSN)1099-114X
    [2]
    左艳.层次分析法在ERP选型评价中的应用.集团经济研究, 2007(19):312. http://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201228031.htm
    [3]
    刘兴太, 杨震, 程洪海, 等.层次分析法判断矩阵在确定科研绩效评价指标权重系数中的应用.中国科技信息, 2008(19):185-186. doi:  10.3969/j.issn.1001-8972.2008.19.118
    [4]
    汪潘义, 许跃辉, 吴娇.基于层次分析法的安徽省水资源配置研究.经济问题探索, 2011(6):185-190. http://www.cnki.com.cn/Article/CJFDTOTAL-JJWS201106040.htm
    [5]
    王颖, 何子君, 杨玉新.基于层次分析法的中长期电力负荷组合预测.河北电力技术, 2011(4):32-34. http://www.cnki.com.cn/Article/CJFDTOTAL-HBJS201102016.htm
    [6]
    牛小梅, 张银铃.层次分析法在电力客户信用风险中的评价.计算机仿真, 2011(5):333-336. http://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201105083.htm
    [7]
    郭湛, 商小雷, 李海.基于AHP的轨道交通安全评价体系模型.中国铁道科学, 2011(5):123-125. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201103024.htm
    [8]
    郭金玉, 张忠彬, 孙庆云.层次分析法的研究与应用.中国安全科学学报, 2008, 18(5):148. http://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200805026.htm
    [9]
    扈海波, 董鹏捷, 潘进军.基于灾损评估的北京地区冰雹灾害风险区划.应用气象学报, 2011, 22(5):612-620. doi:  10.11898/1001-7313.20110512
    [10]
    扈海波, 熊亚军, 张姝丽.基于城市交通脆弱性核算的大雾灾害风险评估.应用气象学报, 2010, 21(6):732-738. doi:  10.11898/1001-7313.20100610
    [11]
    郑国, 薛建军, 范广洲, 等.淮河上游暴雨事件评估模型.应用气象学报, 2011, 22(6):753-759. doi:  10.11898/1001-7313.20110614
    [12]
    刘勇洪, 扈海波, 房小怡, 等.冰雪灾害对北京城市交通影响的预警评估方法.应用气象学报, 2013, 24(3):373-379. doi:  10.11898/1001-7313.20130314
    [13]
    张明洁, 赵艳霞.北方地区日光温室气候适宜性区划方法.应用气象学报, 2013, 24(3):278-286. doi:  10.11898/1001-7313.20130303
    [14]
    陈家金, 李丽纯, 林晶, 等.福建省枇杷气象灾害综合风险评估.应用气象学报, 2014, 25(2):232-241. doi:  10.11898/1001-7313.20140213
    [15]
    罗慧, 张雅斌, 刘璐, 等.高影响天气事件公众关注度的风险评估.气象, 2007, 33(10):15-22. doi:  10.7519/j.issn.1000-0526.2007.10.003
    [16]
    罗慧, 谢璞, 薛允传, 等.奥运气象服务社会经济效益评估的AHP/BCG组合分析.气象, 2008, 34(1):59-65. doi:  10.11676/qxxb2008.006
    [17]
    李梅霞.AHP中判断矩阵一致性改进的一种新方法.系统工程理论与实践, 2000, 20(2):122-125. http://www.cnki.com.cn/Article/CJFDTOTAL-QQHE201006034.htm
    [18]
    罗绍伟.基于熵权和层次分析法的学科馆员服务质量模糊综合评价.现代情报, 2009, 29(8):43-46. http://www.cnki.com.cn/Article/CJFDTOTAL-XDQB200908010.htm
  • 加载中
  • -->

Catalog

    Figures(1)  / Tables(7)

    Article views (4623) PDF downloads(1584) Cited by()
    • Received : 2013-12-06
    • Accepted : 2014-04-29
    • Published : 2014-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint