标度值 | 含义 |
1 | 两指标对某属性同等重要 |
3 | 两指标对某属性,一指标比另一指标稍微重要 |
5 | 两指标对某属性,一指标比另一指标明显重要 |
7 | 两指标对某属性,一指标比另一指标强烈重要 |
9 | 两指标对某属性,一指标比另一指标极端重要 |
1/9 | 两指标对某属性,一指标比另一指标极端次要 |
1/7 | 两指标对某属性,一指标比另一指标强烈次要 |
1/5 | 两指标对某属性,一指标比另一指标明显次要 |
1/3 | 两指标对某属性,一指标比另一指标稍微次要 |
Citation: | Yan Minhui, Yao Xiuping, Wang Lei, et al. Determining weight coefficients of meteorological service evaluation criteria with AHP. J Appl Meteor Sci, 2014, 25(4): 470-475. |
With the rapid development of social economy in China, the demand for meteorological service keeps growing, and the evaluation for meteorological service satisfaction becomes more important. The Analytic Hierarchy Process (AHP) method is used to evaluate the meteorological service satisfaction objectively, and constructing judgment matrix of good consistency is the key to use AHP.Two scales of AHP are used to construct judgment matrix of good consistency, and then weight coefficients can be calculated and the meteorological service can be evaluated. In the assessment system of meteorological service, using overall evaluation of meteorological services as the target layer, the first-grade and the second-grade evaluation indicators are composed. With the survey data of public satisfaction to meteorological services of 2010, 1-9 methods of scale and 0.618 methods of scale in AHP are applied to establish the judgment matrices. It is found that for the judgment matrix with less than 5 evaluation indicators, 1-9 methods of scale can be used; but for the judgment matrix with 5 evaluation indicators or more, 0.618 methods of scale should be used to calculate coefficients. The method is used in processing survey data of 2011, and coefficients for the first-grade and the second-grade evaluation indicators are calculated rapidly. The main value changes between two years are compared. Among weight coefficients for the first-grade, the value of meteorological information service contents increases while the value of meteorological knowledge propaganda and popularization decreases, which illustrates that the public pays more attention to the meteorological service contents and the meteorological department has achieved certain results in the meteorological knowledge propaganda and popularization. There is no obvious tendency change among values of the second-grade evaluation indicators. All judgment matrices pass the comparison matrix consistency tests, proving that the principle of judgment matrix construction is reasonable, effective and useful.
Table 1 Quantization and meaning of 9-scaling-value definaition
标度值 | 含义 |
1 | 两指标对某属性同等重要 |
3 | 两指标对某属性,一指标比另一指标稍微重要 |
5 | 两指标对某属性,一指标比另一指标明显重要 |
7 | 两指标对某属性,一指标比另一指标强烈重要 |
9 | 两指标对某属性,一指标比另一指标极端重要 |
1/9 | 两指标对某属性,一指标比另一指标极端次要 |
1/7 | 两指标对某属性,一指标比另一指标强烈次要 |
1/5 | 两指标对某属性,一指标比另一指标明显次要 |
1/3 | 两指标对某属性,一指标比另一指标稍微次要 |
Table 2 The third-order judgment matrix
标度方法 | 权重 | 一致性检验 |
9分位标度法 | 0.3275,0.2599,0.4126 | 通过 |
0.618标度法 | 0.3305,0.2815,0.3880 | 通过 |
Table 3 The fourth-order judgment matrix
标度方法 | 权重 | 一致性检验 |
9分位标度法 | 0.0801,0.2195,0.6623,0.0382 | 通过 |
0.618标度法 | 0.1363, 0.2549, 0.5221, 0.0867 | 通过 |
Table 4 Weight coefficients for the first-grade evaluation indicators
一级评价指标 | 2010年 | 2011年 |
气象服务信息内容 | 0.3275 | 0.4302 |
气象服务信息发布 | 0.2599 | 0.2116 |
气象知识宣传普及 | 0.4126 | 0.3582 |
Table 5 The second-grade weight coefficients for meteorological service information content
二级评价指标 | 2010年 | 2011年 |
通俗性 | 0.1524 | 0.1608 |
实用性 | 0.2463 | 0.2726 |
准确性 | 0.4470 | 0.5512 |
表现形式 | 0.0594 | 0.0098 |
种类丰富性 | 0.0950 | 0.0056 |
Table 6 The second-grade weight coefficients for meteorological service information diffusion
二级评价指标 | 2010年 | 2011年 |
及时性 | 0.7306 | 0.7331 |
渠道的多样性 | 0.0810 | 0.0566 |
获取的方便性 | 0.1884 | 0.2103 |
Table 7 The second-grade weight coefficients for meteorological knowledge propaganda and popularization
二级评价指标 | 2010年 | 2011年 |
宣传普及渠道 | 0.1633 | 0.1567 |
可读性 | 0.1013 | 0.1376 |
趣味性 | 0.0555 | 0.0723 |
气象常识普及面 | 0.1825 | 0.2114 |
及时获取气象灾害防御知识 | 0.4974 | 0.4220 |
[1] |
Rahman S, FralrL C.A hierarchical approach to electric utility Planning.International Journal of Energy Resource, 1984, 8(2):185-196. doi: 10.1002/(ISSN)1099-114X
|
[2] |
左艳.层次分析法在ERP选型评价中的应用.集团经济研究, 2007(19):312. http://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201228031.htm
|
[3] |
刘兴太, 杨震, 程洪海, 等.层次分析法判断矩阵在确定科研绩效评价指标权重系数中的应用.中国科技信息, 2008(19):185-186. doi: 10.3969/j.issn.1001-8972.2008.19.118
|
[4] |
汪潘义, 许跃辉, 吴娇.基于层次分析法的安徽省水资源配置研究.经济问题探索, 2011(6):185-190. http://www.cnki.com.cn/Article/CJFDTOTAL-JJWS201106040.htm
|
[5] |
王颖, 何子君, 杨玉新.基于层次分析法的中长期电力负荷组合预测.河北电力技术, 2011(4):32-34. http://www.cnki.com.cn/Article/CJFDTOTAL-HBJS201102016.htm
|
[6] |
牛小梅, 张银铃.层次分析法在电力客户信用风险中的评价.计算机仿真, 2011(5):333-336. http://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201105083.htm
|
[7] |
郭湛, 商小雷, 李海.基于AHP的轨道交通安全评价体系模型.中国铁道科学, 2011(5):123-125. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201103024.htm
|
[8] |
郭金玉, 张忠彬, 孙庆云.层次分析法的研究与应用.中国安全科学学报, 2008, 18(5):148. http://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200805026.htm
|
[9] |
扈海波, 董鹏捷, 潘进军.基于灾损评估的北京地区冰雹灾害风险区划.应用气象学报, 2011, 22(5):612-620. doi: 10.11898/1001-7313.20110512
|
[10] |
扈海波, 熊亚军, 张姝丽.基于城市交通脆弱性核算的大雾灾害风险评估.应用气象学报, 2010, 21(6):732-738. doi: 10.11898/1001-7313.20100610
|
[11] |
郑国, 薛建军, 范广洲, 等.淮河上游暴雨事件评估模型.应用气象学报, 2011, 22(6):753-759. doi: 10.11898/1001-7313.20110614
|
[12] |
刘勇洪, 扈海波, 房小怡, 等.冰雪灾害对北京城市交通影响的预警评估方法.应用气象学报, 2013, 24(3):373-379. doi: 10.11898/1001-7313.20130314
|
[13] |
张明洁, 赵艳霞.北方地区日光温室气候适宜性区划方法.应用气象学报, 2013, 24(3):278-286. doi: 10.11898/1001-7313.20130303
|
[14] |
陈家金, 李丽纯, 林晶, 等.福建省枇杷气象灾害综合风险评估.应用气象学报, 2014, 25(2):232-241. doi: 10.11898/1001-7313.20140213
|
[15] |
罗慧, 张雅斌, 刘璐, 等.高影响天气事件公众关注度的风险评估.气象, 2007, 33(10):15-22. doi: 10.7519/j.issn.1000-0526.2007.10.003
|
[16] |
罗慧, 谢璞, 薛允传, 等.奥运气象服务社会经济效益评估的AHP/BCG组合分析.气象, 2008, 34(1):59-65. doi: 10.11676/qxxb2008.006
|
[17] |
李梅霞.AHP中判断矩阵一致性改进的一种新方法.系统工程理论与实践, 2000, 20(2):122-125. http://www.cnki.com.cn/Article/CJFDTOTAL-QQHE201006034.htm
|
[18] |
罗绍伟.基于熵权和层次分析法的学科馆员服务质量模糊综合评价.现代情报, 2009, 29(8):43-46. http://www.cnki.com.cn/Article/CJFDTOTAL-XDQB200908010.htm
|