Zhang Aiying, Wang Huanjiong, Dai Junhu, et al. Applicability analysis of phenological models in the flowering time prediction of ornamental plants in Beijing area. J Appl Meteor Sci, 2014, 25(4): 483-492.
Citation: Zhang Aiying, Wang Huanjiong, Dai Junhu, et al. Applicability analysis of phenological models in the flowering time prediction of ornamental plants in Beijing area. J Appl Meteor Sci, 2014, 25(4): 483-492.

Applicability Analysis of Phenological Models in the Flowering Time Prediction of Ornamental Plants in Beijing Area

  • Received Date: 2014-01-11
  • Rev Recd Date: 2014-05-05
  • Publish Date: 2014-07-31
  • In recent years, with the tourism booming and the increasing demands for flower-appreciation, the prediction of flowering date of ornamentals plants becomes more and more important. For a long time, phenological models are widely used in agriculture field, but rarely applied in predicting flowering time of ornamental plants.Based on phenological data of three ornamentals plants (Prunus discoidea, Magnolia denudata and Amygdalus davidiana) in Beijing Area, corresponding meteorological data during the period of 1981-2012 at Haidian and Miyun meteorological stations, three phenological models (SW Model, UniChill Model and Statistical Model) for simulating the first flowering date and the full flowering date of the above three plants are developed. In the experimental process, the least square fitting is introduced in computing parameters, including linear least square fitting in Statistical Model and nonlinear least square fitting in SW Model and UniChill Model. Moreover, the simulating annealing approach is used to obtain the analytic solutions for SW Model and UniChill Model. Results show that SW Model performs well in simulating the first flowering date and the full flowering date of Prunus discoidea, the full flowering date of Magnolia denudata, and the first flowering date and the full flowering date of Amygdalus davidiana. Besides, SW Model is the most applicable model with the root mean square error (RMSE) of external verification between 1.93-3.58 days. UniChill Model ranks the second with the RMSE of 2.49-3.89 days, and Statistical Model has the largest uncertainty with the RMSE of 2.37-4.24 days. As far as prediction accuracy is concerned, SW Model also ranks the first, and for more than 85% of years, the prediction error is within 3 days.Above all, SW Model is recommended for predicting the flowering dates of the ornamental plants in Beijing Area. But Statistical Model based on daily average temperature, considering the comprehensive effect of light and moisture and plant physiological processes, may perform better. With the increasing urban heat island effect in Beijing Area, the deviation caused by urban heat island effect should be removed during the application of SW Model.

  • Fig. 1  Location of phenological and meteorological stations

    Fig. 2  Effectiveness of SW Model, UniChill Model and Statistical Model for simulating the flowering date and the full flowering date of Prunus discoidea

    Fig. 3  Effectiveness of SW Model, UniChill Model and Statistical Model for simulating the flowering date and the full flowering date of Magnolia denudata

    Fig. 4  Effectiveness of SW Model, UniChill Model and Statistical Model for simulating the first flowering date and the full flowering date of Amygdalus davidiana

    Fig. 5  The observed and simulated the first flowering date and the full flowering date of Amygdalus davidiana from 1982 to 2012

    Table  1  Phenological data used in this study

    物种观测地点资料时段资料来源
    杭州早樱玉渊潭公园1998—2012年自主观测
    白玉兰密云农业
    气象试验站
    1996—2012年农业气象
    试验站观测
    山桃颐和园公园1981—2012年中国物候观测网
    DownLoad: Download CSV

    Table  2  Model parameters and test results of SW Model for simulating the first flowering date and the full flowering date of three plants

    模拟项目模型参数内部检验交叉检验
    t0TbG/(℃·d)ERMS/dESERMS/dES
    杭州早樱始花期13.0131.71.590.94*2.350.88*
    杭州早樱盛花期13.0149.51.880.91*1.930.91*
    白玉兰始花期13.0124.52.910.84*3.580.74*
    白玉兰盛花期13.0146.52.300.87*2.350.85*
    山桃始花期280.0152.32.450.90*2.750.88*
    山桃盛花期280.0180.13.050.85*3.160.84*
    注:*表示达到0.001显著性水平。
    DownLoad: Download CSV

    Table  3  Model parameters and test results of UniChill Model for simulating the first flowering date and the full flowering date of three plants

    模拟项目模型参数内部检验交叉检验
    adeklCG/(℃·d)ERMS/dESERMS/dES
    杭州早樱始花期0.093.9416.66-0.2915.5972.123.591.690.93*3.260.75*
    杭州早樱盛花期0.093.9416.66-0.2815.5972.124.062.270.87*2.820.81*
    白玉兰始花期0.074.0012.39-0.2315.9431.185.272.740.84*3.790.68*
    白玉兰盛花期0.074.0012.39-0.2315.9431.186.002.220.86*2.490.82*
    山桃始花期0.073.5218.16-0.2115.7887.144.552.330.91*2.730.88*
    山桃盛花期0.073.5218.16-0.2115.7887.154.872.510.90*2.680.88*
    注:*表示达到0.001显著性水平。
    DownLoad: Download CSV

    Table  4  Model parameters and test results of Statistic Model for simulating the first flowering date and the full flowering date of three plants

    模拟项目模型参数内部检验交叉检验
    hz月份ERMS/dESERMS/dES
    杭州早樱始花期-3.76113.1532.200.85*2.670.78*
    杭州早樱盛花期-3.53113.9532.150.86*2.370.83*
    白玉兰始花期-3.97114.9833.620.70*4.240.59*
    白玉兰盛花期-3.38114.6533.310.67*3.840.56*
    山桃始花期-3.67104.3033.570.77*3.820.74*
    山桃盛花期-3.89108.8833.470.80*3.750.77*
    注:*表示达到0.001显著性水平。
    DownLoad: Download CSV

    Table  5  Cross-validation results of SW Model, UniChill Model and Statistic Model

    模型ESERMS/d
    SW模型0.74~0.911.93~3.58
    UniChill模型0.68~0.882.49~3.79
    统计模型0.56~0.832.37~4.24
    DownLoad: Download CSV

    Table  6  Predicting accuracy of SW Model, UniChill Model and Statistical Model for simulating the flowering date of three plants (unit:%)

    观赏植物SW模型UniChill模型统计模型
    始花期盛花期始花期盛花期始花期盛花期
    杭州早樱93.7593.7581.2575.0087.5087.50
    白玉兰66.6788.8970.5988.8941.1855.56
    山桃92.8685.7185.7182.1464.2967.86
    DownLoad: Download CSV
  • [1]
    李荣平, 周广胜, 阎巧玲.植物物候模型研究.中国农业气象, 2005, 26(4):210-214. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY200504002.htm
    [2]
    裴顺祥, 郭泉水, 辛学兵, 等.国外植物物候对气候变化响应的研究进展.世界林业研究, 2009, 22(6):31-37. http://www.cnki.com.cn/Article/CJFDTOTAL-SJLY200906005.htm
    [3]
    Sarvas R.Investigation on the annual cycle of development of forest trees:Autumn dormancy and winter dormancy.Commun Inst For Fenn, 1974, 84:10.
    [4]
    Cannell M G R, Smith R I.Thermal time, chill days and prediction of budburst in Picea sitchensis.J Appl Ecol, 1983, 20(1):951-963.
    [5]
    Chuine I, Cour P, Rousseau D D.Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing.Plant, Cell & Environment, 1998, 21(5):455-466. https://www.researchgate.net/publication/227650098_ORIGINAL_ARTICLE_OA_220_EN_Fitting_models_predicting_dates_of_flowering_of_temperate-zone_trees_using_simulated_annealing
    [6]
    Chuin Cour P, Rousseau D D.Selecting models to predict the timing of flowering of temperature trees implications for tree phenology modellintg.Plant, Cell & Environment, 1999, 22(1):1-13. https://www.researchgate.net/publication/227637078_Selecting_models_to_predict_the_timing_of_flowering_of_temperate_trees_Implications_for_tree_phenology_modelling
    [7]
    Chuine I.A unified model for budburst of trees.Journal of Theoretical Biology, 2000, 207(3):337-347. doi:  10.1006/jtbi.2000.2178
    [8]
    Hunter A F, Lechowicz M J.Predicting the timing of budburst in temperate trees.J Appl Ecol, 1992, 29(3):597-604. doi:  10.2307/2404467
    [9]
    Landsberg J J.Apple fruit bud development and growth:Analysis and empirical model.Ann Bot, 1974, 38:1013-1023. doi:  10.1093/oxfordjournals.aob.a084891
    [10]
    Murray M B, Cannell M G R, Smith R I.Date of budburst of fifteen treespecies in Britain following climatic warming.J Appl Ecol, 1989, 26:693-700. doi:  10.2307/2404093
    [11]
    Cannell M G, Smith R I.Thermaltime, chilling days and prediction of budburst in Picea sitchensis.J Appl Ecol, 1983, 20(3):951-963. doi:  10.2307/2403139
    [12]
    Hunter A F, Lechowicz M J.Predicting the timing of budburst in temperate trees.J Appl Ecol, 1992, 2:597-604.
    [13]
    王焕炯, 戴君虎, 葛全胜.1952—2007年中国白蜡树春季物候时空变化分析.中国科学:地球科学, 2012, 42(5):701-710. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201205010.htm
    [14]
    Chuine I, Yiou P, Viovy N, et al.Historical phenology: Grape ripening as a past climate indicator.Nature, 2004, 432:289. doi:  10.1038/432289a
    [15]
    宋富强, 张一平.动态物候模型发展及其在全球变化研究中的应用, 生态学杂志, 2007, 26(1):115-120. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200701023.htm
    [16]
    Morin X, Viner D, Chuine I.Tree species range shifts at a continental scale:New predictive insights from a process-based model.J Ecol, 2008, 96:784-794. doi:  10.1111/jec.2008.96.issue-4
    [17]
    Spieksma F T M, Emberlin J C, Hjelmroos M, et al.Atmospheric birch (Betula) pollen in Europe:Trends and fluctuations in annual quantities and the starting dates of the seasons.Grana, 1995, 34(1):51-57. doi:  10.1080/00173139509429033
    [18]
    戴君虎, 王焕炯, 葛全胜.近50年中国温带季风区植物花期霜冻风险变化.地理学报, 2013, 68(5):593-601. doi:  10.7605/gdlxb.2013.05.047
    [19]
    李荣平, 周广胜, 王笑影, 等.不同物候模型对东北地区作物发育期模拟对比分析.气象与环境学报, 2012, 28(3):25-30. http://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201203005.htm
    [20]
    张谷丰, 孙雪梅, 张志春, 等.物候模型预测稻纵卷叶螟发生期的应用研究.福建农业学报, 2013, 28(2):148-153. http://www.cnki.com.cn/Article/CJFDTOTAL-FJNX201302013.htm
    [21]
    张福春.北京春季的树木物候与气象因子的统计学分析.地理研究, 1983, 2(2):55-64. http://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ198302005.htm
    [22]
    郝日明, 张璐, 张明娟, 等.影响南京桂花秋季开花期变化的关键气候因子研究.植物资源与环境学报, 2006, 15(3):31-34. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWZY200603006.htm
    [23]
    刘流, 甘一忠.桃花迟早年型的冬季气候特点及花期预测.气象, 2006, 32(1):113-116. doi:  10.11898/1001-7313.20060119
    [24]
    韩亚东, 于长文, 刘雪峰.京桃春季物候期与气温之间的关系.安徽农业科学, 2007, 35(15):4517-4518. doi:  10.3969/j.issn.0517-6611.2007.15.057
    [25]
    陈正洪, 肖玫, 陈璇.樱花花期变化特征及其与冬季气温变化的关系.生态学报, 2008, 28(11):5209-5217. doi:  10.3321/j.issn:1000-0933.2008.11.002
    [26]
    张菲, 邢小霞, 李仁杰.利用地温构建菏泽牡丹花期预测模型.中国农业气象, 2008, 29(1):87-89. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY200801020.htm
    [27]
    祝廷成, 钟章成, 李建东.植物生态学.北京:高等教育出版社, 1988. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [28]
    徐琳, 陈效逑, 杜星.中国东部暖温带刺槐花期空间格局的模拟与预测.生态学报, 2013, 33(12):3584-3593. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201312004.htm
    [29]
    韩小梅, 申双和.物候模型研究进展.生态学杂志, 2008, 27(1):89-95. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200801015.htm
    [30]
    谭美, 王四清.观赏植物生长模拟模型研究进展.园艺学报, 2010, 37(9):1523-1530. http://www.cnki.com.cn/Article/CJFDTOTAL-YYXB201009027.htm
    [31]
    赵平, 南素兰.气候和气候变化领域的研究进展.应用气象学报, 2006, 17(6):725-735. doi:  10.11898/1001-7313.20060610
    [32]
    任玉玉, 任国玉, 周江兴.我国大陆大尺度气候观测网的理想密度和分布.应用气象学报, 2012, 23(2):205-213. doi:  10.11898/1001-7313.20120209
    [33]
    曲绍厚, 宋锡铭, 李玉英.北京城区的气象效应.地球物理学报, 1981, 24(2):229-237. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX198102011.htm
    [34]
    郑祚芳, 刘伟东, 王迎春.北京地区城市热岛时空分布特征.南京气象学院学报, 2006, 29(5):694-699. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200510001629.htm
    [35]
    张光智, 徐祥德, 王继志, 等.北京及周边地区城市尺度热岛特征及其演变.应用气象学报, 2002, 13(特刊):43-50. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2002S1004.htm
    [36]
    杨玉华, 徐祥德, 翁永辉.北京城市边界层热岛的日变化周期模拟.应用气象学报, 2003, 14(1):61-68. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030107&flag=1
    [37]
    郑祚芳, 范水勇, 王迎春.城市热岛效应对北京夏季高温的影响.应用气象学报, 2006, 17(增刊Ⅰ):48-53. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2006S1006.htm
    [38]
    石英, 高学杰, 吴佳.华北地区未来气候变化的高分辨率数值模拟.应用气象学报, 2010, 21(5):580-589. doi:  10.11898/1001-7313.20100507
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(6)

    Article views (3870) PDF downloads(1001) Cited by()
    • Received : 2014-01-11
    • Accepted : 2014-05-05
    • Published : 2014-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint