Citation: | Zhang Yijun, Xu Liangtao, Zheng Dong, et al. Review on inverted charge structure of severe storms. J Appl Meteor Sci, 2014, 25(5): 513-526. |
Fig. 1 Stylized profile of Ez in the normal (a) and inverted (b) tripole charge structure (from Reference [19])
Fig. 2 The electric field vectors (dark red line) along the path of sounding balloon (black line) (the shaded represents the radar reflectivity)(from Reference [25])
Fig. 3 Classification of the lightning radiation sources mapped by the LMA in terms of the parent storm charge for the positive-polarity (a) and negative-polarity cloud flashes (b)(from Reference [25])
Fig. 4 The Ez profile of inverted charge structure on 31 May 1988 (from Reference [8])
Fig. 5 Summary of the vertical charge structure of the developing storm inferred from OK-LMA data during each analyzed period of its lifetime (from Reference [51])
[1] |
Wilson C T R.Investigations on lightning discharges and on the electric field of thunderstorms.Phil Trans Roy Soc Lond, 1920, A (221):73-115. http://rsta.royalsocietypublishing.org/content/221/582-593/73
|
[2] |
Simpson S G, Scrase F J.The distribution of electricity in thunderclouds.Proc Roy Soc Lond, 1937(161):309-352. http://rspa.royalsocietypublishing.org/content/209/1097/158
|
[3] |
Simpson S G, RobinsonG D.The distribution of electricity in thunderclouds, Ⅱ.Proc Roy Soc Lond, 1941(177):281-328. http://rspa.royalsocietypublishing.org/content/209/1097/158
|
[4] |
Vonnegut B, Moore C B, Semonin R G, et al.Effect of atmospheric space charge on initial electrification of cumulus clouds.J Geophys Res, 1962, 67(10):3909-3922. doi: 10.1029/JZ067i010p03909
|
[5] |
Marshall T C, Rust W D, Winn W P, et al.Electrical structure in two thunderstorm anvil clouds.J Geophys Res, 1989, 94(D2):2171-2181. doi: 10.1029/JD094iD02p02171
|
[6] |
Krehbiel P R.The Electrical Structure of Thunderstorms.Washington D C:National Acad Press, 1986.
|
[7] |
Marshall T C, Rust W D.Electric field soundings through thunderstorms.J Geophys Res, 1991, 96(D12):22297-22306. doi: 10.1029/91JD02486
|
[8] |
Marshall T C, Rust W D, Stolzenburg M.Electrical structure and updraft speeds in thunderstorms over the southern Great Plains.J Geophys Res, 1995, 100(D1):1001-1015. doi: 10.1029/94JD02607
|
[9] |
Stolzenburg M, Rust W D, Smull B F, et al.Electrical structure in thunderstorm convective regions 1.Mesoscale convective systems.J Geophys Res, 1998, 103(D12):14059-14078. doi: 10.1029/97JD03546
|
[10] |
Stolzenburg M, Rust W D, Marshall T C.Electrical structure in thunderstorm convective regions 2.Isolated storms.J Geophys Res, 1998, 103(D12):14079-14096. doi: 10.1029/97JD03547
|
[11] |
Stolzenburg M, Rust W D, Marshall T C.Electrical structure in thunderstorm convective regions 3.Synthesis.J Geophys Res, 1998, 103(D12):14097-14108. doi: 10.1029/97JD03545
|
[12] |
张义军, 刘欣生, 肖庆复.中国南北方雷暴及人工触发闪电电特性对比分析.高原气象, 1997, 16(2):113-121. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX702.000.htm
|
[13] |
Williams E R.The electrification of severe storms.Meteorological Monographs, 2001, 28(50):527-528. doi: 10.1175/0065-9401-28.50.527
|
[14] |
Rust W D, Marshall T C.On abandoning the thunderstorm tripole-charge paradigm.J Geophys Res, 1996, 101(D18):23499-23504. doi: 10.1029/96JD01802
|
[15] |
Williams E R.The tripole structure of thunderstorms.J Geophys Res, 1989, 94(D11):13151-13167. doi: 10.1029/JD094iD11p13151
|
[16] |
Rakov V A, Uman M A.Lightning Physics and Effects.Cambridge:Cambridge University Press, 2003.
|
[17] |
Takahashi T.Precipitation particle charge distribution and evolution of East Asian rainbands.Atmos Res, 2012, 118:304-323. doi: 10.1016/j.atmosres.2012.07.016
|
[18] |
Krehbiel P R, Brook M, McCrory R A.An analysis of the charge structure of lightning discharges to ground.J Geophys Res:Oceans, 1979, 84(C5):2432-2456. doi: 10.1029/JC084iC05p02432
|
[19] |
Rust W D, MacGorman D R.Possibly inverted-polarity electrical structures in thunderstorms during STEPS.Geophys Res Lett, 2002, 29(12):1571. doi: 10.1029/2001GL014303
|
[20] |
Qie X, Yu Y, Liu X, et al.Charge analysis on lightning discharges to the ground in Chinese inland plateau (close to Tibet).Ann Geophys, 2000, 18(10):1340-1348. doi: 10.1007/s00585-000-1340-z
|
[21] |
张廷龙, 郄秀书, 袁铁, 等.中国内陆高原地区典型雷暴过程的地闪特征及电荷结构反演.大气科学, 2008, 32(5):1221-1227. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200805018.htm
|
[22] |
崔海华, 郄秀书, 张其林, 等.甘肃中川地区云闪的多站同步观测及雷暴的等效电荷结构.高原气象, 2009, 28(4):808-815. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200904012.htm
|
[23] |
武智君, 郄秀书, 王东方, 等.大兴安岭林区负地闪电荷源的反演.气象学报, 2013, 71(4):783-796. doi: 10.11676/qxxb2013.057
|
[24] |
Schuur T J, Rust W D, Smull B F, et al.Electrical and kinematic structure of the stratiform precipitation region trailing an Oklahoma squall Line.J Atmos Sci, 1991, 48(6):825-842. doi: 10.1175/1520-0469(1991)048<0825:EAKSOT>2.0.CO;2
|
[25] |
Rust W D, MacGorman D R, Bruning E C, et al.Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS).Atmos Res, 2005, 76(1-4):247-271. doi: 10.1016/j.atmosres.2004.11.029
|
[26] |
MacGorman D R, Rust W D.The Electrical Nature of Storms.Oxford:Oxford University Press, 1998.
|
[27] |
Kasemir H W.A Contribution to the electrostatic theory of a lightning discharge.J Geophys Res, 1960, 65(7):1873-1878. doi: 10.1029/JZ065i007p01873
|
[28] |
Thomas R J, Krehbiel P R, Rison W, et al.Comparison of ground-based 3-dimensional lightning mapping observations with satellite-based LIS observations in Oklahoma.Geophys Res Lett, 2000, 27(12):1703-1706. doi: 10.1029/1999GL010845
|
[29] |
Rison W, Thomas R J, Krehbiel P R, et al.A GPS-based three-dimensional lightning mapping system:Initial observations in central New Mexico.Geophys Res Lett, 1999, 26(23):3573-3576. doi: 10.1029/1999GL010856
|
[30] |
Krehbiel P R, Thomas R J, Rison W, et al.GPS-based mapping system reveals lightning inside storms.Eos Transactions American Geophysical Union, 2000, 81(3):21-25. doi: 10.1029/00EO00014
|
[31] |
张广庶, 王彦辉, 郄秀书, 等.基于时差法三维定位系统对闪电放电过程的观测研究.中国科学, 2010, 40(4):523-534. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201004014.htm
|
[32] |
Sun Z, Qie X, Liu M, et al.Lightning VHF radiation location system based on short-baseline TDOA technique-Validation in rocket-triggered lightning.Atmos Res, 2013, 129-130:58-66. doi: 10.1016/j.atmosres.2012.11.010
|
[33] |
李亚珺, 张广庶, 文军, 等.沿海地区一次多单体雷暴电荷结构时空演变.地球物理学报, 2012, 55(10):3203-3212. doi: 10.6038/j.issn.0001-5733.2012.10.003
|
[34] |
Li Y, Zhang G, Wen J, et al.Electrical structure of a Qinghai-Tibet Plateau thunderstorm based on three-dimensional lightning mapping.Atmos Res, 2013, 134:137-149. doi: 10.1016/j.atmosres.2013.07.020
|
[35] |
Shao X M, Krehbiel P R.The spatial and temporal development of intracloud lightning.J Geophys Res, 1996, 101(D21):26641-26668. doi: 10.1029/96JD01803
|
[36] |
董万胜, 刘欣生, 陈慈萱, 等.用宽带干涉仪观测云内闪电通道双向传输的特征.地球物理学报, 2003, 46(3):317-321. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200303005.htm
|
[37] |
Zheng D, Zhang Y, Meng Q, et al.Total lightning characteristics and electric structure evolution in a hailstorm.J Meteor Res, 2009, 23(2):233-249. http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXXW200902010.htm
|
[38] |
Zheng D, Zhang Y, Meng Q, et al.Lightning activity and electrical structure in a thunderstorm that continued for more than 24 h.Atmos Res, 2010, 97(1-2):241-256. doi: 10.1016/j.atmosres.2010.04.011
|
[39] |
刘冬霞, 郄秀书, 王志超, 等.飑线系统中的闪电辐射源分布特征及云内电荷结构讨论.物理学报, 2013, 62(21):219201, doi: 10.7498/aps.62.219201.
|
[40] |
Liu D, Qie X, Peng L, et al.Charge structure of a summer thunderstorm in North China:Simulation using a Regional Atmospheric Model System.Adv Atmos Sci, 2014, 31(5):1022-1034. doi: 10.1007/s00376-014-3078-7
|
[41] |
MacGorman D R, Burgess D W.Positive cloud-to-ground lightning in tornadic storms and hailstorms.Mon Wea Rev, 1994, 122(8):1671-1697. doi: 10.1175/1520-0493(1994)122<1671:PCTGLI>2.0.CO;2
|
[42] |
Vonnegut B, Moore C B.Giant Electrical Storms//Smith L G.Recent Advances in Atmospheric Electricity.New York:Pergamon Press, 1958:399-411.
|
[43] |
Lang T J, Miller L J, Weisman M, et al.The Severe Thunderstorm Electrification and Precipitation Study.Bull Amer Meteor Soc, 2004, 85(8):1107-1125. doi: 10.1175/BAMS-85-8-1107
|
[44] |
Zhang Y, Krehbiel P R, Liu X.Polarity inverted intracloud discharges and electric charge structure of thunderstorm.Chin Sci Bull, 2002, 47(20):1725-1729. doi: 10.1007/BF03183317
|
[45] |
MacGorman D R, Rust W D, Krehbiel P, et al.The electrical structure of two supercell storms during STEPS.Mon Wea Rev, 2005, 133(9):2583-2607. doi: 10.1175/MWR2994.1
|
[46] |
Tessendorf S A, Rutledge S A, Wiens K C.Radar and lightning observations of normal and inverted polarity multicellular storms from STEPS.Mon Wea Rev, 2007, 135(11):3682-3706. doi: 10.1175/2007MWR1954.1
|
[47] |
Weiss S A, Rust W D, MacGorman D R, et al.Evolving complex electrical structures of the STEPS 25 June 2000 Multicell Storm.Mon Wea Rev, 2008, 136(2):741-756. doi: 10.1175/2007MWR2023.1
|
[48] |
Zhang Y, Meng Q, Krehbiel P R, et al.Spatial and temporal characteristics of VHF radiation source produced by lightning in supercell thunderstorms.Chin Sci Bull, 2004, 49(6):624-631. doi: 10.1360/03wd0551
|
[49] |
Zhang Y, Meng Q, Lu W, et al.Charge structures and cloud-to-ground lightning discharges characteristics in two supercell thunderstorms.Chin Sci Bull, 2006, 51(2):198-212. doi: 10.1007/s11434-005-0233-7
|
[50] |
Wiens K C, Rutledge S A, Tessendorf S A.The 29 June 2000 supercell observed during STEPS.Part Ⅱ:Lightning and charge structure.J Atmos Sci, 2005, 62(12):4151-4177. doi: 10.1175/JAS3615.1
|
[51] |
Emersic C, Heinselman P L, MacGorman D R, et al.Lightning activity in a hail-producing storm observed with phased-array radar.Mon Wea Rev, 2011, 139(6):1809-1825. doi: 10.1175/2010MWR3574.1
|
[52] |
Uman M A.The Lightning Discharge.London:Academic Press, 1987.
|
[53] |
Rust W D, MacGorman D R, Arnold R T.Positive cloud-to-ground lightning flashes in severe storms.Geophys Res Lett, 1981, 8(7):791-794. doi: 10.1029/GL008i007p00791
|
[54] |
Rust W D, Taylor W L, MacGorman D R, et al.Research on electrical properties of severe thunderstorms in the great plains.Bull Amer Meteor Soc, 1981, 62(9):1286-1293. doi: 10.1175/1520-0477(1981)062<1286:ROEPOS>2.0.CO;2
|
[55] |
Liu D, Feng G, Wu S.The characteristics of cloud-to-ground lightning activity in hailstorms over northern China.Atmos Res, 2009, 91(2-4):459-465. doi: 10.1016/j.atmosres.2008.06.016
|
[56] |
Reap R M, MacGorman D R.Cloud-to-ground lightning:Climatological characteristics and relationships to model fields, radar observations, and severe local storms.Mon Wea Rev, 1989, 117(3):518-535. doi: 10.1175/1520-0493(1989)117<0518:CTGLCC>2.0.CO;2
|
[57] |
Nag A, Rakov V A.Positive lightning:An overview, new observations, and inferences.J Geophys Res, 2012, 117(D08109). http://adsabs.harvard.edu/abs/2012JGRD..117.8109N
|
[58] |
Brook M, Nakano M, Krehbiel P, et al.The electrical structure of the Hokuriku winter thunderstorms.J Geophys Res:Oceans, 1982, 87(C2):1207-1215. doi: 10.1029/JC087iC02p01207
|
[59] |
Kitagawa N, Michimoto K.Meteorological and electrical aspects of winter thunderclouds.J Geophys Res, 1994, 99(D5):10713-10721. doi: 10.1029/94JD00288
|
[60] |
Qie X, Zhang T, Chen C, et al.The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau.Geophys Res Lett, 2005, 32(5):L05814. doi: 10.1029/2004GL022162/full
|
[61] |
Cui H, Qie X, Zhang Q, et al.Intracloud discharge and the correlated basic charge structure of a thunderstorm in Zhongchuan, a Chinese Inland Plateau region.Atmos Res, 2009, 91(2-4):425-429. doi: 10.1016/j.atmosres.2008.06.007
|
[62] |
Gilmore M S, Wicker L J.Influences of the local environment on supercell cloud-to-ground lightning, radar characteristics, and severe weather on 2 June 1995.Mon Wea Rev, 2002, 130(10):2349-2372. doi: 10.1175/1520-0493(2002)130<2349:IOTLEO>2.0.CO;2
|
[63] |
Carey L D, Rutledge S A, Petersen W A.The relationship between severe storm reports and cloud-to-ground lightning polarity in the contiguous United States from 1989 to 1998.Mon Wea Rev, 2003, 131(7):1211-1228. doi: 10.1175/1520-0493(2003)131<1211:TRBSSR>2.0.CO;2
|
[64] |
Zhang Y, Meng Q, Lu W, et al.Positive charge region in lower part of thunderstorm and preliminary breakdown process of negative cloud-to-ground Lightning.J Meteor Res, 2009, 23(1):95-104. http://mall.cnki.net/magazine/article/QXXW200901010.htm
|
[65] |
Mansell E R, MacGorman D R, Ziegler C L, et al.Charge structure and lightning sensitivity in a simulated multicell thunderstorm.J Geophys Res, 2005, 110(D12):D12101. doi: 10.1029/2004JD005287
|
[66] |
MacGorman D R, Rust W D, Ziegler C L, et al.TELEX-The Thunderstorm Electrification and Lightning Experiment.Bull Amer Meteor Soc, 2008, 89(7):997-1013. doi: 10.1175/2007BAMS2352.1
|
[67] |
Takahashi T.Riming electrification as a charge generation mechanism in thunderstorms.J Atmos Sci, 1978, 35(8):1536-1548. doi: 10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2
|
[68] |
Jayaratne E R, Saunders C P R, Hallett J.Laboratory studies of the charging of soft-hail during ice crystal interactions.Quart J Roy Meteor Soc, 1983, 109(461):609-630. doi: 10.1002/(ISSN)1477-870X
|
[69] |
Pereyra R G, Avila E E, Castellano N E, et al.A laboratory study of graupel charging.J Geophys Res, 2000, 105(D16):20803. doi: 10.1029/2000JD900244
|
[70] |
Saunders C P R, Peck S L.Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions.J Geophys Res, 1998, 103(D12):13949-13956. doi: 10.1029/97JD02644
|
[71] |
Williams E, Mushtak V, Rosenfeld D, et al.Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate.Atmos Res, 2005, 76(1-4):288-306. doi: 10.1016/j.atmosres.2004.11.009
|
[72] |
Carey L D, Buffalo K M.Environmental control of cloud-to-ground lightning polarity in severe storms.Mon Wea Rev, 2007, 135(4):1327-1353. doi: 10.1175/MWR3361.1
|
[73] |
MacGorman D R, Rust D, Van der Velde O, et al.Lightning Relative to Precipitation and Tornadoes in a Supercell Storm.12th Int Conf on Atmos Elec, 2003. https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_46956.htm
|
[74] |
MacGorman D R, Apostolakopoulos I R, Lund N R, et al.The timing of cloud-to-ground lightning relative to total lightning activity.Mon Wea Rev, 2011, 139(12):3871-3886. doi: 10.1175/MWR-D-11-00047.1
|
[75] |
Baker M B, Blyth A M, Christian H J, et al.Relationships between lightning activity and various thundercloud parameters:Satellite and modelling studies.Atmos Res, 1999, 51(3-4):221-236. doi: 10.1016/S0169-8095(99)00009-5
|
[76] |
Levin Z, Yair Y, Ziv B.Positive cloud-to-ground flashes and wind shear in Tel-Aviv thunderstorms.Geophys Res Lett, 1996, 23(17):2231-2234. doi: 10.1029/96GL00709
|
[77] |
Lang T J, Rutledge S A.Relationships between convective storm kinematics, precipitation, and lightning.Mon Wea Rev, 2002, 130(10):2492-2506. doi: 10.1175/1520-0493(2002)130<2492:RBCSKP>2.0.CO;2
|
[78] |
Bruning E C, Rust W D, MacGorman R D, et al.Formation of charge structures in a supercell.Mon Wea Rev, 2010, 138(10):3740-3761. doi: 10.1175/2010MWR3160.1
|
[79] |
MacGorman D R, Kuhlman K, Burning E, et al.Lightning and Electrical Structure of Severe Storms.14th International Conference on Atmospheric Electricity, 2011. doi: 10.1029/97JD03545/abstract
|
[80] |
Saunders C P R, Keith W D, Mitzeva R P.The effect of liquid water on thunderstorm charging.J Geophys Res, 1991, 96(D6):11007-11017. doi: 10.1029/91JD00970
|
[81] |
Gardiner B, Lamb D, Pitter R L, et al.Measurements of initial potential gradient and particle charges in a Montana summer thunderstorm.J Geophys Res, 1985, 90(D4):6079-6086. doi: 10.1029/JD090iD04p06079
|
[82] |
Ziegler C L, MacGorman D R, Dye J E, et al.A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm.J Geophys Res, 1991, 96(D7):12833-12855. doi: 10.1029/91JD01246
|
[83] |
Helsdon J H, Wojcik W A, Farley R D.An examination of thunderstorm-charging mechanisms using a two-dimensional storm electrification model.J Geophys Res, 2001, 106(D1):1165-1192. doi: 10.1029/2000JD900532
|
[84] |
Kuhlman K M, Ziegler C L, Mansell E R, et al.Numerically simulated electrification and lightning of the 29 June 2000 STEPS supercell storm.Mon Wea Rev, 2006, 134(10):2734-2757. doi: 10.1175/MWR3217.1
|
[85] |
Zhang Y, Yan M, Liu X.Simulation study of discharge processes in thunderstorm.Chin Sci Bull, 1999, 44(22):2098-2102. doi: 10.1007/BF02884930
|
[86] |
Bruning E C, Weiss S A, Calhoun K M.Continuous variability in thunderstorm primary electrification and an evaluation of inverted-polarity terminology.Atmos Res, 2014, 135-136:274-284. doi: 10.1016/j.atmosres.2012.10.009
|
[87] |
Takahashi T, Suzuki K.Development of negative dipoles in a stratiform cloud layer in a Okinawa "Baiu" MCS system.Atmos Res, 2010, 98(2-4):317-326. doi: 10.1016/j.atmosres.2010.07.013
|
[88] |
王飞, 董万胜, 张义军, 等.云内大粒子对闪电活动影响的个例模拟.应用气象学报, 2009, 20(5):564-570. doi: 10.11898/1001-7313.20090507
|
[89] |
徐良韬, 张义军, 王飞, 等.雷暴起电和放电物理过程在WRF模式中的耦合及初步检验.大气科学, 2012, 36(5):1041-1052. doi: 10.3878/j.issn.1006-9895.2012.11235
|
[90] |
Black R A, Hallett J.Electrification of the hurricane.J Atmos Sci, 1999, 56(12):2004-2028. doi: 10.1175/1520-0469(1999)056<2004:EOTH>2.0.CO;2
|
[91] |
Xu L, Zhang Y, Wang F, et al.Simulation of the electrification of a tropical cyclone using the WRF-ARW model:An idealized case.J Meteor Res, 2014, 28(3):453-468. doi: 10.1007/s13351-014-3079-6
|
[92] |
曹治强, 王新.与强对流相联系的云系特征和天气背景.应用气象学报, 2013, 24(3):365-372. doi: 10.11898/1001-7313.20130313
|
[93] |
张腾飞, 尹丽云, 张杰, 等.西南两次中尺度对流雷暴系统演变和地闪特征.应用气象学报, 2013, 24(2):207-218. doi: 10.11898/1001-7313.20130209
|
[94] |
Wu T, Dong W, Zhang Y, et al.Discharge height of lightning narrow bipolar events.J Geophys Res, 2012, 117(D5):D05119.
|
[95] |
Fierro A O, Shao X M, Hamlin T, et al.Evolution of eyewall convective events as indicated by intracloud and cloud-to-ground lightning activity during the rapid intensification of hurricanes Rita and Katrina.Mon Wea Rev, 2011, 139(5):1492-1504. doi: 10.1175/2010MWR3532.1
|
[96] |
张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi: 10.11898/1001-7313.20060504
|
[97] |
张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi: 10.11898/1001-7313.20060619
|