Lan Yu, Zheng Yongguang, Mao Dongyan, et al. Classification and satellite nephogram features of hail weather in North China. J Appl Meteor Sci, 2014, 25(5): 538-549.
Citation: Lan Yu, Zheng Yongguang, Mao Dongyan, et al. Classification and satellite nephogram features of hail weather in North China. J Appl Meteor Sci, 2014, 25(5): 538-549.

Classification and Satellite Nephogram Features of Hail Weather in North China

  • Received Date: 2014-01-06
  • Rev Recd Date: 2014-05-20
  • Publish Date: 2014-09-30
  • Based on conventional observations, automatic weather station data, geostationary satellite data and NCEP FNL data, meso-scale features of 27 hail processes occurred over Northern China during 2010-2012 are analyzed. According to synoptic circulation and cloud characteristics, these hail processes are divided into three types.The first type of hail convective storm is often embedded in the westerly trough of cold vortex system. The place where the severe convective storms initiated is frequently on the rear of the cloud band corresponding to the synoptic system. The cold front provides a strong lifting for convective initiation, while the anticyclone dry air intrusion triggers the intensive development of the hail storm. Whenever the water vapor content is plenty, heavy rainfall can also occur.The hail shooting zone of the second type convective storm is in the front of the cold vortex. The range of affected area is highly related to the southward movement of the cold vortex system. The front system often presents a forward-tilting structure, which is the main characteristic of this type of hail convective storm. The middle layer cold air mass become superimposed above 850 hPa warm ridge, which causes a wide range of potential instability, and also a continuous hail shooting weather, accompany with heavy rainfall in North China. The life span of the convective system is as long as 10 to 16 hours. The third type of hail convective storm generally occurs in a stable synoptic background, which is different from the other two. The hail storm initiates within the cold air mass, while the northerly air stream dominates the upper layer. Due to the poor moisture condition, the main disaster is hail and wind gale rather than short-during heavy rainfall. The short-wave trough at 500 hPa and the weak convective instability in the afternoon locally may be the cause for this kind of convective storm, and it is still difficult to forecast.On satellite-based (infrared and water vapor) images, over 90% of hail events produce hail when the convective storm growing rapidly. The main hail shooting zone is near the edge of a storm propagation frontal side, corresponding to a large gradient of TBB area in infrared image. The convective storm with both the low TBB (≤-40 ℃) and large gradient of TBB (≥8 ℃/0.05°) features seems an important threshold for short-range forecasting a bigger hail stone.
  • Fig. 1  The conceptual pattern of hail convective storm at the rear of cold vortex system in North China

    Fig. 2  The case on 25 June 2012

    (a) 500 hPa geopotential height (contour, unit:dagpm) at 2000 BT and infrared image at 1800 BT, (b) visible image at 1800 BT

    Fig. 3  The case on 25 June 2012

    (a) infrared image at 1400 BT, (b) water vapor image at 1400 BT, (c) infrared image at 1700 BT, (d) infrared image at 2000 BT

    Fig. 4  The conceptual pattern of hail convective storm ahead of the cold vortex in North China

    Fig. 5  The case on 17 June 2010

    (a) 500 hPa geopotential height (contour, unit:dagpm) at 2000 BT and infrared image at 1700 BT, (b) water vapor image at 0900 BT, (c) infrared image at 1300 BT, (d) infrared image at 1700 BT

    Fig. 6  The conceptual pattern of hail convective storm within northerly flow in North China

    Fig. 7  The case on 24 June 2011

    (a) 500 hPa geopotential height (contour, unit:dagpm) at 0800 BT and infrared image at 0900 BT, (b) infrared image at 1500 BT

    Fig. 8  Box-and-whiskers plots of the extreme TBB (a) and of the extreme gradient TBB (b)(+ denotes outlier)

    Fig. 9  Scatters beween extreme TBB and extreme gradient TBB for all hail convective storms in North China

    Table  1  Hail convective storm cases in North China

    序号 日期 降雹天气主要影响地区 测站冰雹最大直径/mm 冰雹天气类型
    1 2010-05-04 山西北部、河北西北部 9 低涡槽前型
    2 2010-05-28 内蒙古、河北、北京 9 冷涡云系尾部型
    3 2010-06-02 山西、河北、河南 9 偏北气流控制型
    4 2010-06-03 陕西、山西 10 偏北气流控制型
    5 2010-06-17 河北、天津 25 低涡槽前型
    6 2010-07-10 山西 9 低涡槽前型
    7 2010-09-25 河北、内蒙古 8 冷涡云系尾部型
    8 2011-05-26 山西、河北 20 冷涡云系尾部型
    9 2011-05-30 河北、内蒙古 7 低涡槽前型
    10 2011-06-06 山西 11 偏北气流控制型
    11 2011-06-11 河北、河南 27 偏北气流控制型
    12 2011-06-23 河北 9 偏北气流控制型
    13 2011-06-24 山西 15 偏北气流控制型
    14 2011-07-15 山西、河北 8 冷涡云系尾部型
    15 2011-07-16 山西、河北 25 冷涡云系尾部型
    16 2011-07-24 山西 18 冷涡云系尾部型
    17 2011-08-09 山西、河北、北京 17 偏北气流控制型
    18 2012-06-01 山西、河北 8 冷涡云系尾部型
    19 2012-06-03 北京、河北 8 冷涡云系尾部型
    20 2012-06-09 河北、北京、天津 9 冷涡云系尾部型
    21 2012-06-13 河北、北京 8 低涡槽前型
    22 2012-06-25 内蒙古、山西 6 冷涡云系尾部型
    23 2012-07-05 内蒙古、山西、河北 8 低涡槽前型
    24 2012-07-10 内蒙古、山西、河北、北京 9 偏北气流控制型
    25 2012-07-11 河北 8 偏北气流控制型
    26 2012-07-12 河北 55 偏北气流控制型
    27 2012-07-30 山西、陕西 13 偏北气流控制型
    DownLoad: Download CSV

    Table  2  Characteristics of three-pattern hail convective storms in North China

    项目 冷涡云系尾部型 低涡槽前型 偏北气流控制型
    主要强对流天气类型 短时强降水、冰雹 短时强降水、冰雹、雷暴大风 冰雹、雷暴大风
    天气尺度环流特征 东亚阻塞形势, 冷涡位于华北以北地区, 地面冷锋 低涡位置偏南,直接影响华北地区, 前倾结构 冷涡系统位置偏东, 华北地处冷涡系统主槽槽后,大尺度高压脊前,高空受偏北气流控制
    冷涡中心位置 45°~55°N, 110°~125°E 30°~35°N, 110°~120°E 45°N以北, 120°E以东
    对流易发区域 高空槽底,地面锋面尾部区域 低涡东南象限,低层槽前暖区一侧,暖湿输送顶端 短波槽过境及其下游区域中,具备不稳定能量的地区
    中尺度环境条件 中层干冷空气侵入, 边界层辐合较强 下暖湿上干冷, 强的热力不稳定层结, 水汽输送充沛 水汽条件有限, 局地的热力不稳定, 短波槽前动力触发条件
    对流系统形态特征 锋区带状对流云系,北部常与冷涡螺旋云系相连 旺盛的带状对流云系,传播前沿不断有新生对流云团发展 多表现为孤立对流云团的发展和消亡
    对流系统生命史/h 8~14 10~16 3~8
    冰雹主要发生时段 块状对流云团的发展期 块状对流云团的发展期, 系统传播过程中的新生对流云团发展期 分散 (斑点状) 小型对流云团发展期
    DownLoad: Download CSV
  • [1]
    俞小鼎, 周小刚, 王秀明.雷暴与强对流临近预报技术进展.气象学报, 2012, 70(3):311-337. doi:  10.11676/qxxb2012.030
    [2]
    Amburn S A, Wolf P L.VIL density as a hail indicator.Wea Forecasting, 1997, 12:473-478. doi:  10.1175/1520-0434(1997)012<0473:VDAAHI>2.0.CO;2
    [3]
    Skripniková K, Řezáčová D.Radar-based hail detection.Atmos Res, 2013, 141:31. http://www.sciencedirect.com/science/article/pii/S0169809513001804
    [4]
    龚乃虎, 蔡启铭.雹云的特征及其雷达识别.高原气象, 1982, 1(2):43-52. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX198202005.htm
    [5]
    朱敏华, 俞小鼎, 夏峰, 等.强烈雹暴三体散射的多普勒天气雷达分析.应用气象学报, 2006, 17(2):215-223. doi:  10.11898/1001-7313.20060213
    [6]
    汤兴芝, 黄兴友.冰雹云的多普勒天气雷达识别参量及其预警作用.暴雨灾害, 2009, 28(3):261-265. http://www.cnki.com.cn/Article/CJFDTOTAL-HBQX200903012.htm
    [7]
    曹治强, 王新.与强对流相联系的云系特征和天气背景.应用气象学报, 2013, 24(3):365-372. doi:  10.11898/1001-7313.20130313
    [8]
    Bauer B, Waldvogel A.Satellite data based detection and prediction of hail.Atmos Res, 1997, 43(3):217-231. doi:  10.1016/S0169-8095(96)00032-4
    [9]
    Rosenfeld D, Woodley W L, Lerner A, et al.Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase.J Geophys, 2008, 13:D04208.doi: 10.1029/2007JD008600.
    [10]
    陈渭民.卫星气象学.北京:北京气象出版社, 2003.
    [11]
    David W.Observations of damaging hailstorms from geosynchronous satellite digital data.Mon Wea Rev, 1980, 108:337-348. doi:  10.1175/1520-0493(1980)108<0337:OODHFG>2.0.CO;2
    [12]
    Adler R F, Markus M J, Fenn D D. Detection of severeMidwest thunderstorms using geosynchronous satellite data.Mon Wea Rev, 1983, 113:769-781. doi:  10.1175/1520-0493%281985%29113%3C0769%3ADOSMTU%3E2.0.CO%3B2
    [13]
    郑新江, 赵亚民.华北强对流云团的活动及其天气特征.应用气象学报, 1992, 3(2):153-157. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX1992S1012.htm
    [14]
    杨贵名, 马学款, 宗志平.华北地区降雹时空分布特征.气象, 2003, 29(8):31-34. doi:  10.7519/j.issn.1000-0526.2003.08.007
    [15]
    王瑾, 刘黎平.WSR-88D冰雹探测算法在贵州地区的评估检验.应用气象学报, 2011, 22(1):96-106. doi:  10.11898/1001-7313.20110110
    [16]
    仇娟娟, 何立富.苏沪浙地区短时强降水与冰雹天气分布及物理量特征对比分析.气象, 2013, 39(5):577-584. doi:  10.3969/2012jms.0153
    [17]
    许爱华, 陈云辉, 陈涛, 等.锋面北侧冷气团中连续降雹环境场特征及成因.应用气象学报, 2013, 24(2):197-206. doi:  10.11898/1001-7313.20130208
    [18]
    闵晶晶, 刘还珠, 曹晓钟, 等.天津"6.25"大冰雹过程的中尺度特征及成因.应用气象学报, 2011, 22(5):525-536. doi:  10.11898/1001-7313.20110502
    [19]
    张杰, 李文莉, 康凤琴, 等.一次冰雹云演变过程的卫星遥感监测与分析.高原气象, 2004, 23(6):758-763. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200406004.htm
    [20]
    张晰莹, 方丽娟, 景学义, 等.黑龙江省产生冰雹的卫星云图特征.南京气象学院学报, 2004, 27(1):106-112. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200312007009.htm
    [21]
    马禹, 王旭, 郭江勇.新疆系统性冰雹天气过程的环流形势及卫星云图特征分析.气象, 2004, 23(6):787-794. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200406008.htm
    [22]
    史海平, 秦爱民, 孙悦, 等.从"02.6.29 "天气过程谈西北气流型冰雹的预报.山西气象, 2003, 4:3-5. http://www.cnki.com.cn/Article/CJFDTOTAL-SXQX200304000.htm
    [23]
    郑媛媛, 姚晨, 郝莹, 等.不同类型大尺度环流背景下强对流天气的短时临近预报预警研究.气象, 2011, 37(7):795-801. doi:  10.7519/j.issn.1000-0526.2011.07.003
    [24]
    许晨海, 张纪淮, 朱福康.用能量分析方法识别冰雹云.气象, 2001, 27(7):35-40. doi:  10.7519/j.issn.1000-0526.2001.07.009
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(2)

    Article views (3875) PDF downloads(999) Cited by()
    • Received : 2014-01-06
    • Accepted : 2014-05-20
    • Published : 2014-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint