He Yue, He Ping, Lin Xiaomeng. Raindrop size distribution retrieval from wind profiler radar based on double-gaussian fitting. J Appl Meteor Sci, 2014, 25(5): 570-580.
Citation: He Yue, He Ping, Lin Xiaomeng. Raindrop size distribution retrieval from wind profiler radar based on double-gaussian fitting. J Appl Meteor Sci, 2014, 25(5): 570-580.

Raindrop Size Distribution Retrieval from Wind Profiler Radar Based on Double-Gaussian Fitting

  • Received Date: 2014-02-28
  • Rev Recd Date: 2014-06-13
  • Publish Date: 2014-09-30
  • The raindrop size distribution is extremely important for understanding the physical process of cloud and fog formation, and the generation of natural rainfall. It is a major tool that can be used to assess the cloud conditions for weather modification and verify associated results, in addition to being an important scientific evidence for numerical modeling.The weather radar often uses the method of PPP (Pulse Pair Processing) to process the signal, so it cannot get the raindrop size data directly. However, wind profiler radar is invented to detect the turbulence of clear air and it can obtain the distribution of Doppler velocity of precipitation particles, hence data can be used to retrieve raindrop spectral of precipitation effectively. Under the condition of precipitation, the return information of wind profiler radar is superimposed by turbulent signal and precipitation signal, and the power spectrum would often appear an obvious bimodal structure. Some representative precipitation data of Yanqing, Beijing in 2006 and 2012 are analyzed, by the method of removing noise and calibration curve, the power spectrum of antenna array is retrieved and then a more accurate signal power spectrum is obtained. The method of double-Gaussian fitting is used to distinguish the power spectrum of atmospheric turbulence signal and the power spectrum of precipitation signal. The signal is used to estimate a better raindrop size distribution after removing effects of air turbulence. According to relations between precipitation particles and diameters, the raindrop spectrum can be obtained easily. Through analyses and comparisons of different intensity and types of retrieved raindrop size distribution data, it can be concluded that in the process of estimating the raindrop size distribution from wind profiler radar, the method of double-Gaussian fitting could separate two peaks effectively, and the precision is more accurate and the structure emerges an exponential form basically. The result shows that using the double-Gaussian fitting to separate the bimodal structure of power spectral data is feasible and reliable, and it can achieve better quality control of wind profile radar data. Also, the method provides reference for applying wind profiler radars under more complex weather conditions.
  • Fig. 1  The flow chart of raindrop size distribution retrivals

    Fig. 2  The separation and treatment of double peaks

    Fig. 3  The density of return signal power at 25 different heights detected by the wind profile radar vertical sounding at 2045 BT 25 Aug 2006 (a) and 1105 BT 21 Jul 2012 (b)

    Fig. 4  The raindrop size distribution from wind profile radar at the height of 2670 m

    Fig. 5  The radar echoes of Beijing Region at 2142 BT 25 Aug 2006 (a) and 0300 BT 24 Apr 2012 (b)

    Fig. 6  The density of return signal power at 25 different heights detected by the wind profile radar vertical sounding at 2142 BT 25 Aug 2006 (a) and 0300 BT 24 Apr 2012 (b)

    Fig. 7  The density of return signal power and the result of double-Gauss fitting (a) and raindrop size distribution (b) at the height of 1350 m on 25 Aug 2006

    Fig. 8  The density of return signal power and the result of double-Gauss fitting (a) and raindrop size distribution (b) at the height of 1230 m on 24 Apr 2012

    Fig. 9  The distribution of 25 coefficients of determination at 2100 BT 25 Aug 2006

    Fig. 10  Distributions of λ (a) and N0 (b) at different heights

    Table  1  Parameters of radar

    参数 探测模式
    波长/mm 674 674
    采样频率/MHz 40 40
    脉冲宽度/μs 0.8 4
    噪声系数/dB 2 2
    谱变换数 256 512
    谱平均数 6 12
    相干积分次数 200 50
    距离库长/m 120 240
    Nyquist速度/(m·s-1) ±16.7 ±33.3
    最小速度间隔/(m·s-1) 0.13 0.13
    天线增益/dB 29 29
    发射功率/kW 7.7 7.7
    DownLoad: Download CSV
  • [1]
    何平.相控阵风廓线雷达.北京:气象出版社, 2006.
    [2]
    尹忠海, 张沛源.利用卡尔曼滤波校准方法估算区域降水量.应用气象学报, 2005, 16(2):213-219. doi:  10.11898/1001-7313.20050226
    [3]
    何平, 李柏, 吴蕾, 等.确定风廓线雷达功率谱噪声功率方法.应用气象学报, 2013, 24(3):297-303. doi:  10.11898/1001-7313.20130305
    [4]
    Wakasugi K, Mizutani A, Matsuo M, et al.A direct method for deriving drop-size distribution and vertical air velocities from VHF Doppler radar spectra.J Atmos Ocean Technol, 1986, 3(4):623-629. doi:  10.1175/1520-0426(1986)003<0623:ADMFDD>2.0.CO;2
    [5]
    Ohno Y, Williams C R, Gage K S.Simplified Method for Rain Rate and Z-R Relation Estimation Using UHF Wind Profiler.29th International Conference on Radar Meteorology, 1999.
    [6]
    Kirankumar N V P, Rao T N, Radhakrishna B, et al.Statistical characteristics of raindrop size distribution in southwest monsoon season.Journal of Applied Meteorology & Climatology, 2008, 47(2):576-590. doi:  10.1175/2007JAMC1610.1
    [7]
    Peters G, Fischer B, Münster H, et al.Profiles of raindrop size distributions as retrieved by microrain radars.J Appl Meteor, 2005, 44(12):1930-1949. doi:  10.1175/JAM2316.1
    [8]
    黄伟, 张沛源, 葛润生.风廓线雷达估测雨滴谱参数.气象科技, 2002, 30(6):334-340. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200206002.htm
    [9]
    王晓蕾, 阮征, 葛润生, 等.风廓线雷达探测降水云体中雨滴谱的试验研究.高原气象, 2010, 29(2):498-505. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201002026.htm
    [10]
    张旭, 周秀骥.大气折射率结构系数的观测实验.应用气象学报, 1994, 5(1):19-26. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19940101&flag=1
    [11]
    何平, 朱小燕, 阮征, 等.风廓线雷达探测降水过程的初步研究.应用气象学报, 2009, 20(4):465-470. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200904011&flag=1
    [12]
    阮征, 葛润生, 吴志根.风廓线仪探测降水云体结构方法的研究.应用气象学报, 2002, 13(3):330-338. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020343&flag=1
    [13]
    Griesser T, Richner H. Multiple peak processing algorithm for identification of atmospheric signals in Doppler radar wind profiler spectra.Meteorologische Zeitschrift, 1998, 7(6):292-302.
    [14]
    胡非.湍流、间隙性与大气边界层.北京:科学出版社, 1995.
    [15]
    张培昌, 杜秉玉, 戴铁丕.雷达气象学.北京:气象出版社, 2001.
    [16]
    费利那A, 斯塔德F A.雷达数据处理.北京:国防工业出版社, 1988.
    [17]
    智永锋, 张俊, 杨棅政.基于最大似然估计的一种新的信号处理方法.西北工业大学学报, 2008, 4:180-183. http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD200802008.htm
    [18]
    Gunn R, Kinzer G D.The terminal velocity of fall for water droplets in stagnant air.Journal of Meteorology, 1949, 6(4):243-248. doi:  10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2
    [19]
    钟刘军, 阮征, 葛润生, 等.风廓线雷达回波信号强度定标方法.应用气象学报, 2010, 21(5):598-603. doi:  10.11898/1001-7313.20100509
    [20]
    Marshall J S, Palmer W M K.The distribution of raindrops with size.Journal of meteorology, 1948, 5(4):165-166. doi:  10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
    [21]
    宫福久, 刘吉成, 李子华.三类降水云雨滴谱特征研究.大气科学, 1997, 21(5):607-614. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201402010.htm
    [22]
    陈宝君, 宫福久.三类降水云雨滴谱分布模式.气象学报, 1998, 56(4):506-512. doi:  10.11676/qxxb1998.046
    [23]
    张培昌, 王振会.大气微波遥感基础.北京:气象出版社, 1995:88-96.
    [24]
    郑娇恒, 陈宝君.雨滴谱分布函数的选择:M-P和Gamma分布的对比研究.气象科学, 2007, 27(1):17-25. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200701002.htm
  • 加载中
  • -->

Catalog

    Figures(10)  / Tables(1)

    Article views (4709) PDF downloads(1151) Cited by()
    • Received : 2014-02-28
    • Accepted : 2014-06-13
    • Published : 2014-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint