模拟条件 | 参数 |
大气模型 | 美国标准大气 |
扫描函数 | 三角型函数 |
波数范围/cm-1 | 6237~6242 |
光谱分辨率/cm-1 | 0.0014, 0.07, 0.312, 0.5 |
FWHM内光谱采样数 | 1, 2, 4 |
Citation: | Wang Qian, Yang Zhongdong, Bi Yanmeng. Spectral parameters and signal-to-noise ratio requirement for CO2 hyper spectral remote sensor. J Appl Meteor Sci, 2014, 25(5): 600-609. |
Fig. 4 Transmittance spectra for two detectors under the sampling ratios listed in Table 2
Table 1 Simulation conditions of LBLRTM
模拟条件 | 参数 |
大气模型 | 美国标准大气 |
扫描函数 | 三角型函数 |
波数范围/cm-1 | 6237~6242 |
光谱分辨率/cm-1 | 0.0014, 0.07, 0.312, 0.5 |
FWHM内光谱采样数 | 1, 2, 4 |
Table 2 Sampling spacing and sampling ratio for two spectral resolutions of detectors
探测器 | 采样间隔/cm-1 | 采样率 | |
FWHM为0.312 cm-1 | FWHM为0.468 cm-1 | ||
A | 0.234 | 1.33 | 2 |
B | 0.117 | 2.67 | 4 |
Table 3 Transmittance average errors for two detectors under two spectral resolutions, referred to those under the baseline in the absorption channels between 6235-6245 cm-1
探测器 | FWHM为0.312 cm-1 | FWHM为0.468 cm-1 |
A | 2.41% | 0.92% |
B | 0.57% | 0 |
Table 4 Simulation conditions of SCIATRAN
模拟条件 | 参数 |
背景CO2浓度 | 373.6×10-6 |
气溶胶条件 | 晴空无气溶胶 |
太阳天顶角 | 60° |
地表反照率 | 0.15 |
狭缝函数类型 | 高斯型 |
光谱分辨率 | 0.08 nm |
光谱范围 | 1594~1624 nm |
Table 5 SNR requirements of detecting CO2 concentration variation in boundary layer
CO2浓度变化 | f/% | 信噪比 |
1×10-6 | -0.0524 | 1900 |
2×10-6 | -0.1048 | 950 |
3×10-6 | -0.1571 | 640 |
4×10-6 | -0.3252 | 300 |
Table 6 SNR requirements of detecting CO2 concentration variation in the whole column
CO2柱浓度变化 | f/% | 信噪比 |
1×10-6 | -0.1219 | 820 |
2×10-6 | -0.2441 | 410 |
3×10-6 | -0.3580 | 280 |
4×10-6 | -0.4874 | 200 |
[1] |
江志红, 丁裕国, 金莲姬.中国近百年气温场变化成因的统计诊断分析.应用气象学报, 1997, 8(2):175-185. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19970224&flag=1
|
[2] |
Canadell J G, Le Quéré C, Raupach M R, et al.Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks.Proceedings of the National Academy of Sciences, 2007, 104(47):18866-18870. doi: 10.1073/pnas.0702737104
|
[3] |
卞林根, 高志球, 陆龙骅, 等.长江下游农业生态区CO2通量的观测试验.应用气象学报, 2006, 16(6):828-834. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200506109&flag=1
|
[4] |
程红兵, 王木林, 温玉璞, 等.我国瓦里关山, 兴隆温室气体CO2, CH4和N2O的背景浓度.应用气象学报, 2003, 14(4):402-409. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030450&flag=1
|
[5] |
温玉璞, 汤洁.瓦里关山大气二氧化碳浓度变化及地表排放影响的研究.应用气象学报, 1997, 8(2):129-136. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19970219&flag=1
|
[6] |
周凌晞, 刘立新, 张晓春, 等.我国温室气体本底浓度网络化观测的初步结果.应用气象学报, 2009, 19(6):641-645. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080601&flag=1
|
[7] |
Rayner P J, O'Brien D M.The utility of remotely sensed CO2 concentration data in surface source inversions.Geophy Res Lett, 2001, 28(1):175-178. doi: 10.1029/2000GL011912
|
[8] |
Bovensmann H, Burrows J P, Buchwitz M, et al.SCIAMACHY:Mission objectives and measurement modes.J Atmos Sci, 1999, 56(2):127-150. doi: 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2
|
[9] |
Buchwitz M, Beek R, Burrows J P, et al.Atmospheric methane and carbon dioxide from SCIAMACHY satellite data:Initial comparison with chemistry and transport models.Atmospheric Chemistry and Physics, 2005, 5(4):941-962. doi: 10.5194/acp-5-941-2005
|
[10] |
Bréon F M, Ciais P.Spaceborne remote sensing of greenhouse gas concentrations.Compte Rendus Geoscience, 2010, 342(4):412-424. http://www.sciencedirect.com/science/article/pii/S1631071309002399
|
[11] |
Pollock R, Haring R E, Holden J R, et al.The Orbiting Carbon Observatory instrument:Performance of the OCO instrument and plans for the OCO-2 instrument.Remote Sensing.International Society for Optics and Photonics, 2010:78260W-78260W-13.
|
[12] |
Chance K, Kurosu T P, Sioris C E.Undersampling correction for array detector-based satellite spectrometers.Applied Optics, 2005, 44(7):1296-1304. doi: 10.1364/AO.44.001296
|
[13] |
刘毅, 吕达仁, 陈洪滨, 等.卫星遥感大气CO2的技术与方法进展综述.遥感技术与应用, 2011, 26(2):247-253. doi: 10.11873/j.issn.1004-0323.2011.2.247
|
[14] |
Crisp D, Boesch H, Brown L, et al.OCO-2 Level 2 Full Physics Retrieval Algorithm Theoretical Basis.http://disc.sci.gsfc.nasa.gov/acdisc/documentation/OCO-2_L2_FP_ATBD_v1_rev4_Nov10.pdf.2010.
|
[15] |
Natraj V.Radiative Rransfer Modeling for the Retrieval of CO2 from Space.Pasadena:California Institute of Technology, 2008.
|
[16] |
孙毅义, 董浩, 毕朝辉, 等.大气辐射传输模型的比较研究.强激光与粒子束, 2004, 16(2):149-153. http://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200402004.htm
|
[17] |
Clough S A, Iacono M J, Moncet J L.Line-by-line calculations of atmospheric fluxes and cooling rates:Application to water vapor.Journal of Geophysical Research:Atmospheres (1984-2012), 1992, 97(D14):15761-15785. doi: 10.1029/92JD01419
|
[18] |
Clough S A, Iacono M J.Line-by-line calculation of atmospheric fluxes and cooling rates 2.Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons.J Geophy Res, 1995, 100(D8):16519-16535. doi: 10.1029/95JD01386
|
[19] |
User's Guide for the Software Package SCIATRAN (Radiative Transfer Model and Retrieval Algorithm) Version 3.1, November 15, 2011.
|
[20] |
廖国男. 大气辐射导论 (第二版). 郭彩丽, 周诗健, 译. 北京: 气象出版社, 2004: 21-23.
|
[21] |
Mao J, Kawa S R.Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight.Applied Optics, 2004, 43(4):914-927. doi: 10.1364/AO.43.000914
|
[22] |
Roscoe H K, Fish D J, Jones R L.Interpolation errors in UV-visible spectroscopy for stratospheric sensing:implications for sensitivity, spectral resolution, and spectral range.Applied Optics, 1996, 35(3):427-432. doi: 10.1364/AO.35.000427
|
[23] |
Goldman S.Information Theory.NewYork:Prentice-Hall, 1953.
|
[24] |
Denning A S, Fung I Y, Randall D.Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota.Nature, 1995, 376(6537):240-243. doi: 10.1038/376240a0
|
[25] |
毕研盟, 杨忠东, 卢乃锰, 等.近红外高光谱CO2探测通道选择分析.应用气象学报, 2014, 25(2):143-149. doi: 10.11898/1001-7313.20140203
|