Wang Qian, Yang Zhongdong, Bi Yanmeng. Spectral parameters and signal-to-noise ratio requirement for CO2 hyper spectral remote sensor. J Appl Meteor Sci, 2014, 25(5): 600-609.
Citation: Wang Qian, Yang Zhongdong, Bi Yanmeng. Spectral parameters and signal-to-noise ratio requirement for CO2 hyper spectral remote sensor. J Appl Meteor Sci, 2014, 25(5): 600-609.

Spectral Parameters and Signal-to-noise Ratio Requirement for CO2 Hyper Spectral Remote Sensor

  • Received Date: 2013-08-29
  • Rev Recd Date: 2014-07-24
  • Publish Date: 2014-09-30
  • With the stable increase of carbon dioxide (CO2) concentrations, space based measurement of CO2 concentration in lower atmosphere by reflected sunlight in near infrared band has become a hot research topic. Recently, instruments sensitive to total CO2 column data in near-surface have become available through the SCIAMACHY instrument on ENVISAT and TANSO-FTS on GOSAT. The developing hyper spectral CO2 detector in China carried by TANSAT is going to be launched in 2015. Hyper spectral CO2 detector is designed to provide global measurements of CO2 in lower troposphere, employing high resolution spectra of reflected sunlight taken simultaneously in near-infrared CO2 (1.61 μm and 2.06 μm) and O2 (0.76 μm) bands.Associated with climate change and observation requirements of carbon sources and sinks, the feasibility of making CO2 column concentration measurements with high-resolution and high-precision is studied by high resolution atmosphere radiation transfer model. In consideration of the application requirements, effects of key specifications of the hyper spectral CO2 detector such as spectral resolution, sampling ratio and sign-to-noise ratio (SNR) on CO2 detection are analyzed.Typical characteristics of hyper spectral CO2 detector on TANSAT are grating spectrometer and array-based detector. To achieve the column averaged atmospheric CO2 dry air mole fraction (XCO2) precision requirements of 1×10-6-4×10-6, hyper spectral CO2 detector should provide high resolution at first to resolve CO2 absorption lines from continuous spectra of reflected sunlight. Compared to a variety of simulated spectral resolutions, the spectral resolution of hyper spectral CO2 detector on TANSAT can resolve CO2 spectral features and maintain the moderate radiance sensitivity. Since small size array detector-based instruments may suffer from undersampling of the spectra, influences of spectral undersampling to CO2 absorption spectra are studied, indicating that sampling ratio should exceed 2 pixels/FWHM to ensure the accuracy of CO2 spectrum.SNR is one of the most important parameters of hyper spectral CO2 detectors to ensure the reliability. SNR requirements of CO2 detector to different detection precisions are explored based on the radiance sensitivity factors. Results show that it is difficult to achieve SNR to detect 1×10-6-4×10-6 CO2 concentration change in the boundary layer by solar shortwave infrared passive remote sensing, limited by the instrument development condition and level at present. However, the instrument SNR to detect 1% change in the CO2 column concentration is attainable. These results are not only conductive to universal applications and guides on developing grating spectrometer, but also helpful to better understand the complexity of CO2 retrieval.
  • Fig. 1  Transmittance spectra for three spectral resolutions

    Fig. 2  Transmittance spectra for three spectral resolutions and sampling ratios

    Fig. 3  Transmittance spectra for two spectral resolutions of two detectors

    Fig. 4  Transmittance spectra for two detectors under the sampling ratios listed in Table 2

    Fig. 5  Transmittance relative errors for two detectors under two spectral resolutions

    Table  1  Simulation conditions of LBLRTM

    模拟条件 参数
    大气模型 美国标准大气
    扫描函数 三角型函数
    波数范围/cm-1 6237~6242
    光谱分辨率/cm-1 0.0014, 0.07, 0.312, 0.5
    FWHM内光谱采样数 1, 2, 4
    DownLoad: Download CSV

    Table  2  Sampling spacing and sampling ratio for two spectral resolutions of detectors

    探测器 采样间隔/cm-1 采样率
    FWHM为0.312 cm-1 FWHM为0.468 cm-1
    A 0.234 1.33 2
    B 0.117 2.67 4
    DownLoad: Download CSV

    Table  3  Transmittance average errors for two detectors under two spectral resolutions, referred to those under the baseline in the absorption channels between 6235-6245 cm-1

    探测器 FWHM为0.312 cm-1 FWHM为0.468 cm-1
    A 2.41% 0.92%
    B 0.57% 0
    DownLoad: Download CSV

    Table  4  Simulation conditions of SCIATRAN

    模拟条件 参数
    背景CO2浓度 373.6×10-6
    气溶胶条件 晴空无气溶胶
    太阳天顶角 60°
    地表反照率 0.15
    狭缝函数类型 高斯型
    光谱分辨率 0.08 nm
    光谱范围 1594~1624 nm
    DownLoad: Download CSV

    Table  5  SNR requirements of detecting CO2 concentration variation in boundary layer

    CO2浓度变化 f/% 信噪比
    1×10-6 -0.0524 1900
    2×10-6 -0.1048 950
    3×10-6 -0.1571 640
    4×10-6 -0.3252 300
    DownLoad: Download CSV

    Table  6  SNR requirements of detecting CO2 concentration variation in the whole column

    CO2柱浓度变化 f/% 信噪比
    1×10-6 -0.1219 820
    2×10-6 -0.2441 410
    3×10-6 -0.3580 280
    4×10-6 -0.4874 200
    DownLoad: Download CSV
  • [1]
    江志红, 丁裕国, 金莲姬.中国近百年气温场变化成因的统计诊断分析.应用气象学报, 1997, 8(2):175-185. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19970224&flag=1
    [2]
    Canadell J G, Le Quéré C, Raupach M R, et al.Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks.Proceedings of the National Academy of Sciences, 2007, 104(47):18866-18870. doi:  10.1073/pnas.0702737104
    [3]
    卞林根, 高志球, 陆龙骅, 等.长江下游农业生态区CO2通量的观测试验.应用气象学报, 2006, 16(6):828-834. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200506109&flag=1
    [4]
    程红兵, 王木林, 温玉璞, 等.我国瓦里关山, 兴隆温室气体CO2, CH4和N2O的背景浓度.应用气象学报, 2003, 14(4):402-409. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030450&flag=1
    [5]
    温玉璞, 汤洁.瓦里关山大气二氧化碳浓度变化及地表排放影响的研究.应用气象学报, 1997, 8(2):129-136. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19970219&flag=1
    [6]
    周凌晞, 刘立新, 张晓春, 等.我国温室气体本底浓度网络化观测的初步结果.应用气象学报, 2009, 19(6):641-645. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080601&flag=1
    [7]
    Rayner P J, O'Brien D M.The utility of remotely sensed CO2 concentration data in surface source inversions.Geophy Res Lett, 2001, 28(1):175-178. doi:  10.1029/2000GL011912
    [8]
    Bovensmann H, Burrows J P, Buchwitz M, et al.SCIAMACHY:Mission objectives and measurement modes.J Atmos Sci, 1999, 56(2):127-150. doi:  10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2
    [9]
    Buchwitz M, Beek R, Burrows J P, et al.Atmospheric methane and carbon dioxide from SCIAMACHY satellite data:Initial comparison with chemistry and transport models.Atmospheric Chemistry and Physics, 2005, 5(4):941-962. doi:  10.5194/acp-5-941-2005
    [10]
    Bréon F M, Ciais P.Spaceborne remote sensing of greenhouse gas concentrations.Compte Rendus Geoscience, 2010, 342(4):412-424. http://www.sciencedirect.com/science/article/pii/S1631071309002399
    [11]
    Pollock R, Haring R E, Holden J R, et al.The Orbiting Carbon Observatory instrument:Performance of the OCO instrument and plans for the OCO-2 instrument.Remote Sensing.International Society for Optics and Photonics, 2010:78260W-78260W-13.
    [12]
    Chance K, Kurosu T P, Sioris C E.Undersampling correction for array detector-based satellite spectrometers.Applied Optics, 2005, 44(7):1296-1304. doi:  10.1364/AO.44.001296
    [13]
    刘毅, 吕达仁, 陈洪滨, 等.卫星遥感大气CO2的技术与方法进展综述.遥感技术与应用, 2011, 26(2):247-253. doi:  10.11873/j.issn.1004-0323.2011.2.247
    [14]
    Crisp D, Boesch H, Brown L, et al.OCO-2 Level 2 Full Physics Retrieval Algorithm Theoretical Basis.http://disc.sci.gsfc.nasa.gov/acdisc/documentation/OCO-2_L2_FP_ATBD_v1_rev4_Nov10.pdf.2010.
    [15]
    Natraj V.Radiative Rransfer Modeling for the Retrieval of CO2 from Space.Pasadena:California Institute of Technology, 2008.
    [16]
    孙毅义, 董浩, 毕朝辉, 等.大气辐射传输模型的比较研究.强激光与粒子束, 2004, 16(2):149-153. http://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200402004.htm
    [17]
    Clough S A, Iacono M J, Moncet J L.Line-by-line calculations of atmospheric fluxes and cooling rates:Application to water vapor.Journal of Geophysical Research:Atmospheres (1984-2012), 1992, 97(D14):15761-15785. doi:  10.1029/92JD01419
    [18]
    Clough S A, Iacono M J.Line-by-line calculation of atmospheric fluxes and cooling rates 2.Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons.J Geophy Res, 1995, 100(D8):16519-16535. doi:  10.1029/95JD01386
    [19]
    User's Guide for the Software Package SCIATRAN (Radiative Transfer Model and Retrieval Algorithm) Version 3.1, November 15, 2011.
    [20]
    廖国男. 大气辐射导论 (第二版). 郭彩丽, 周诗健, 译. 北京: 气象出版社, 2004: 21-23.
    [21]
    Mao J, Kawa S R.Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight.Applied Optics, 2004, 43(4):914-927. doi:  10.1364/AO.43.000914
    [22]
    Roscoe H K, Fish D J, Jones R L.Interpolation errors in UV-visible spectroscopy for stratospheric sensing:implications for sensitivity, spectral resolution, and spectral range.Applied Optics, 1996, 35(3):427-432. doi:  10.1364/AO.35.000427
    [23]
    Goldman S.Information Theory.NewYork:Prentice-Hall, 1953.
    [24]
    Denning A S, Fung I Y, Randall D.Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota.Nature, 1995, 376(6537):240-243. doi:  10.1038/376240a0
    [25]
    毕研盟, 杨忠东, 卢乃锰, 等.近红外高光谱CO2探测通道选择分析.应用气象学报, 2014, 25(2):143-149. doi:  10.11898/1001-7313.20140203
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(6)

    Article views (4385) PDF downloads(922) Cited by()
    • Received : 2013-08-29
    • Accepted : 2014-07-24
    • Published : 2014-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint