Wang Sujuan, Cui Peng, Zhang Peng, et al. The improvement of FY-3B/VIRR SST algorithm and its accuracy. J Appl Meteor Sci, 2014, 25(6): 701-710.
Citation: Wang Sujuan, Cui Peng, Zhang Peng, et al. The improvement of FY-3B/VIRR SST algorithm and its accuracy. J Appl Meteor Sci, 2014, 25(6): 701-710.

The Improvement of FY-3B/VIRR SST Algorithm and Its Accuracy

  • Received Date: 2014-03-12
  • Rev Recd Date: 2014-09-15
  • Publish Date: 2014-11-30
  • The evolution of sea surface temperature (SST) algorithms is introduced and a set of SST regression formalisms are given. Some improvements are made based on operational SST algorithm from FY-3B meteorological satellite visible and infrared radiometer (VIRR) data. On matching algorithm, quality controlled in situ data from the in situ quality monitor (iQUAM) is used to improve the input data precision of regression. Fields of matchup database (MDB) are enlarged to provide the convenience for error analysis. Pixels with "confident clear" flag in FY-3B/VIRR cloud mask (CLM) products are matched up to form gross matchups, and then tightly filtered by some tests to form tight matchups, which make the sample selection more reasonable. On regression algorithm, based on least-square regression used for the early operational SST product, the robust regression is developed, and its performance is tested by NOAA-19/AVHRR MDB of 2010. It shows that the precision of SST is increased by 21% in daytime with split-window non-linear SST (NL) algorithm and 30% in nighttime with triple-window MC (TC) algorithm. On retrieval algorithm, the spatial uniformity test and climate reference test are introduced, the unidentified cloud (especially at night) is excluded and the SST retrieval precision is improved.A set of SST regression formalisms are tested based on NOAA-19/AVHRR 2010 MDB. It shows NL is the best algorithm for daytime while TC is the best algorithm for nighttime, which is accordant with NESDIS/STAR. The monthly MDB is created from FY-3B/VIRR measurements paired with coincident SST measurements from buoys data.The same regression analysis method is also used on FY-3B/VIRR MDB. Comparing three daytime SST algorithms and five nighttime SST algorithms, the best algorithm to retrieve FY-3B/VIRR SST is NL both in daytime and nighttime. It shows for FY-3B/VIRR nighttime TC, the contribution of 3.7 μm band is smaller than split-window bands, and the calibration of 3.7 μm band has stripe phenomenon. A three-month MDB from October to December in 2012 is used to derive coefficients. An independent MDB from January to March in 2013 is used to access the accuracy of the best NL algorithm for FY-3B/VIRR. Based on matchup analyses, the root mean square error (RMSE) between FY-3B/VIRR SST and in situ SST is 0.41℃ (NL_D) and 0.43℃ (NL_N). Compare with Daily Optimum Interpolation SST (OISST), the RMSE of FY-3B/VIRR SST is 1.45℃ (NL_D) and 1.5℃ (NL_N). When the absolute difference between FY-3B/VIRR SST and OISST is within 2℃, the RMSE is 0.82℃ (NL_D) and 0.84℃ (NL_N).
  • Fig. 1  Images of FY-3B/VIRR at 1100 UTC 30 April 2013(a) bright temperature image of 10.8 μm, (b) cloud image, (c) SST image

    Fig. 2  Statistics time series of three daytime SST algorithms with respect to in situ SST from August 2012 to March 2013

    Fig. 3  Statistics time series of five nighttime SST algorithms with respect to in situ SST from August 2012 to March 2013

    Fig. 4  SST images at 1155 UTC 26 April 2013

    (a) TC based on MDB_V2, (b) NL based on MDB_V1

    Table  1  List of acronyms of FY-3B/VIRR SST Algorithm

    中文名称 英文名称 算法缩写
    分裂窗多通道海温算法 split-window multichannel SST MC
    分裂窗带二次项的多通道海温算法 split-window quadratic term multichannel SST QD
    分裂窗非线性海温算法 split-window nonlinear SST NL
    三窗多通道海温算法 triple-window multichannel SST TC
    双窗非线性海温算法 dual-window nonlinear SST DN
    DownLoad: Download CSV

    Table  2  The regression information of TCSST Algorithm

    卫星名称 时间 样本量 a0 a1 a2 a3 a4 a5 均方根误差/℃ R2
    NOAA-19 2010-12 6759 -276.284 0.54182 1.05278 -0.57961 0.14744 1.27217 0.21070 0.99950
    FY-3B (MDB_V1) 2012-12 8445 -268.239 3.99199 -0.04842 -2.97015 0.06730 1.14176 0.55932 0.99242
    FY-3B (MDB_V2) 2012-12 5496 -283.496 1.81021 0.82827 -1.59888 0.08934 1.59769 0.36817 0.99272
    DownLoad: Download CSV

    Table  3  Validation statistics of FY-3B/VIRR SST algorithms in April 2013

    样本类型 样本量 算法 偏差/℃ 绝对偏差/℃ 均方根误差/℃
    全部样本 524459 MC_D -0.53 1.17 1.56
    516443 QD_D -0.51 1.14 1.54
    555289 NL_D -0.62 1.05 1.45
    偏差在2℃以内的样本 436538 MC_D -0.20 0.74 0.90
    431521 QD_D -0.18 0.71 0.87
    474085 NL_D -0.24 0.66 0.82
    全部样本 567287 DN_N -0.17 1.41 1.71
    547859 MC_N -0.20 1.20 1.57
    534992 QD_N -0.18 1.19 1.56
    501166 TC_N -0.26 1.15 1.52
    618061 NL_N -0.43 1.14 1.50
    偏差在2℃以内的样本 422498 DN_N 0.15 0.91 1.04
    442431 MC_N 0.12 0.76 0.91
    434138 QD_N 0.16 0.75 0.89
    410531 TC_N 0.06 0.73 0.88
    515003 NL_N 0.04 0.71 0.84
    DownLoad: Download CSV

    Table  4  Monthly validation statistics for FY-3B/VIRR NL in April 2013

    样本类型 算法 平均有效样本量 偏差/℃ 绝对偏差/℃ 均方根误差/℃
    全部样本 NL_D 555289 -0.62 1.05 1.45
    NL_N 618061 -0.43 1.14 1.50
    偏差在2℃以内的样本 NL_D 474085 -0.24 0.66 0.82
    NL_N 515003 0.04 0.71 0.84
    DownLoad: Download CSV
  • [1]
    杨军, 董超华.新一代风云极轨气象卫星业务新产品及应用.北京:科学出版社, 2010. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [2]
    Minnett P.The regional optimization of infrared measurements of sea surface temperature from space.Journal of Geophysical Research: Oceans (1978-2012), 1990, 95(C8):13497-13510. doi:  10.1029/JC095iC08p13497
    [3]
    Barton I, Cechet R.Comparison and optimization of AVHRR sea surface temperature algorithms.J Atmos Ocean Technol, 1989, 6:1083-1089. doi:  10.1175/1520-0426(1989)006<1083:CAOOAS>2.0.CO;2
    [4]
    Prabhakara C, Dalu G, Kunde V G.Estimation of sea surface temperature from remote sensing in the 11-to 13-μm window region.J Geophys Res, 1974, 79(33):5039-5044. doi:  10.1029/JC079i033p05039
    [5]
    McClain E P, Pichel WG, Walton C C.Comparative performance of AVHRR-based multichannel sea surface temperatures.J Geophys Res, 1985, 90(11):11587-11601. https://www.researchgate.net/publication/260333724_Comparative_performance_of_AVHRR-based_Multichannel_Sea_Surface_Temperatures
    [6]
    Cornillon P, Gilman C.Processing and analysis of large volumes of satellite-derived thermal infrared data.Journal of Geophysical Research:Oceans (1978-2012), 1987, 92(C12):12993-13002. doi:  10.1029/JC092iC12p12993
    [7]
    Walton C, Pichel W.The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites.J Geophys Res, 1998, 103(C12):27999-28012. doi:  10.1029/98JC02370
    [8]
    Walton C C.Nonlinear multichannel algorithms for estimating sea surface temperature with AVHRR satellite data.J Applied Meteor, 1988, 27:115-124. doi:  10.1175/1520-0450(1988)027<0115:NMAFES>2.0.CO;2
    [9]
    Li X, Pichel W, Maturi E, et al.Deriving the operational nonlinear multichannel sea surface temperature algorithm coefficients for NOAA-15 AVHRR/3.Int J Remote Sens, 2001, 22(4):699-704. doi:  10.1080/01431160010013793
    [10]
    Wu X Q, Paul W M, Gary S W.Estimation of sea surface temperatures using GOES-8/9 radiance measurements.Bull Amer Meteor Soc, 1999, 80:1127-1138. doi:  10.1175/1520-0477(1999)080<1127:EOSSTU>2.0.CO;2
    [11]
    François C, Brisson A.Definition of a radiosounding database for sea surface brightness temperature simulations:Application to sea surface temperature retrieval algorithm determination.Remote Sens Environ, 2002, 81(2):309-326. https://www.researchgate.net/publication/222892879_Definition_of_a_radiosounding_database_for_sea_surface_brightness_temperature_simulations_Application_to_sea_surface_temperature_retrieval_algorithm_determination
    [12]
    王保华.极轨气象卫星业务产品SST反演方法及精度检验.气象科技, 2001, 29(1):27-30. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200101006.htm
    [13]
    许健民, 杨军, 张志清, 等.我国气象卫星的发展与应用.气象, 2010, 36(7):94-100. doi:  10.7519/j.issn.1000-0526.2010.07.016
    [14]
    李俊, 方宗义.卫星气象的发展——机遇与挑战.气象, 2012, 38(2):129-146. doi:  10.11898/1001-7313.20120201
    [15]
    陈丽娟, 袁媛, 杨明珠, 等.海温异常对东亚夏季风影响机理的研究进展.应用气象学报, 2013, 24(5):521-532. doi:  10.11898/1001-7313.20130502
    [16]
    袁杰, 巩远发, 魏凤英, 等.关键区海温年代际异常对我国东部夏季降水影响.应用气象学报, 2013, 24(3):268-277. doi:  10.11898/1001-7313.20130302
    [17]
    韩雪, 魏凤英, 董敏, 等.统计预报海温场驱动的CAM3.1模式预报试验.应用气象学报, 2009, 20(3):303-311. doi:  10.11898/1001-7313.20090306
    [18]
    杨素雨, 严华生.冬季北太平洋南北海温异常对我国汛期雨带类型的影响研究.应用气象学报, 2007, 18(2):193-201. doi:  10.11898/1001-7313.20070233
    [19]
    李秀萍, 罗勇, 郭品文, 等.春夏季赤道中东太平洋海温异常变化与东亚夏季风关系的研究.应用气象学报, 2006, 17(2):176-182. doi:  10.11898/1001-7313.20060208
    [20]
    周晓霞, 王盘兴, 祝昌汉, 等.全球海温异常年代际分量的方差贡献及其与中国气候异常的相关.应用气象学报, 2005, 16(1):96-104. doi:  10.11898/1001-7313.20050113
    [21]
    Martin S. 蒋兴伟, 译. 海洋遥感导论. 北京: 海洋出版社, 2008.
    [22]
    Ignatov A.GOES-R Advanced Baseline Imager Algorithm Theoretical Basis Document for Sea Surface Temperature.2010.[2013-07-26]. http://www.goes-r.gov/products/ATBDs/baseline/baseline-SST-v2.0.pdf.
    [23]
    Dash P, Ignatov A, Kihai Y, et al.The SST quality monitor (SQ UAM).J Tech, 2010:27, doi:10.1175/2010JTECHO756.1, 1899-1917. doi:10.1175/2010JTECHO756.1.
    [24]
    王素娟, 陆风, 张鹏, 等.FY2海面温度产品质量检验方法与误差分析.气象, 2013, 39(10):1331-1336. doi:  10.7519/j.issn.1000-0526.2013.10.011
    [25]
    Kilpatrick K A, Podesta G P, Evans R.Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database.J Geophys Res, 2001, 106(C5):9179-9197. doi:  10.1029/1999JC000065
    [26]
    毛志华, 朱乾坤, 潘德炉.卫星遥感业务系统海表温度误差控制方法.海洋学报, 2003, 25(5):49-57. http://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200305006.htm
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(4)

    Article views (3602) PDF downloads(656) Cited by()
    • Received : 2014-03-12
    • Accepted : 2014-09-15
    • Published : 2014-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint