Wang Zhenhui, Li Qing, Chu Yanli, et al. Environmental thermal radiation interference on atmospheric brightness temperature measurement with ground-based K-band microwave radiometer. J Appl Meteor Sci, 2014, 25(6): 711-721.
Citation: Wang Zhenhui, Li Qing, Chu Yanli, et al. Environmental thermal radiation interference on atmospheric brightness temperature measurement with ground-based K-band microwave radiometer. J Appl Meteor Sci, 2014, 25(6): 711-721.

Environmental Thermal Radiation Interference on Atmospheric Brightness Temperature Measurement with Ground-based K-band Microwave Radiometer

  • Received Date: 2014-04-06
  • Rev Recd Date: 2014-09-10
  • Publish Date: 2014-11-30
  • Effects of operating environment thermal radiation interference on atmospheric brightness temperature measurement with ground-based K-band microwave radiometer especially for channels near 28.0 GHz and 30.0 GHz are studied. A model for simulating antenna temperature which expresses the energy received by the radiometer based on radiative transfer is derived and used to calculate the response of the brightness temperature measurements to parameters such as antenna specifications, radome, surrounding temperature and emissivity. Results show that the equivalent main beam efficiency (ηe) defined by 3 dB points is only 73.17% for a typical antenna, of which the half-beam half width α=3.1° and the gain G=30 dB. The value of ηe would be even smaller if factors like aperture radiation effect, shape-error, and occlusion and so on are taken into account. The brightness temperature would fluctuate by 4.0 K in case that ηe=70%, the surrounding temperature and emissivity would change by ΔTg=10 K and Δε=0.05 around Tg=280 K and ε=0.85 if the radome can be neglected. The fluctuation would increase up to 9.6 K if the size of the opening in the radome is just for the main beam. Therefore, if the equivalent main beam efficiency determined by the antenna gain and 3-dB beam width for the current radiometer system is not large enough, variation of the operating environment must be taken into account during the correction of K-band brightness temperature measurement even though LN calibration of the radiometer system can be performed as manual-required. For this, a brightness temperature correction method for operating environment variation is suggested according to the theoretical relationship and the result from application to observations. Over one year application after LN calibration shows that the fitness and correlation between the observed brightness temperature after correction and the calculated brightness temperature with radiative transfer equation is obviously better than before, especially for channels of 28 GHz and 30 GHz.
  • Fig. 1  Schematic of radiometer antenna directivity function

    Fig. 2  Time series of clear sky environment temperature change Tg and the observed brightness temperature TBM, the corrected brightness temperature TBO and the simulated TBC for 4 typical channels in K-band at 0800 BT and 2000 BT from 22 Dec 2010 to 31 Dec 2011

    Table  1  Antenna performance and analysis for two typical types of K-band radiometers

    行号 条件 参数 A类辐射计 B类辐射计
    22~31 GHz 22 GHz 30 GHz
    1 厂家提供 G/dB 33.2 30 32
    2 X/dB < -30 < -23 < -24
    3 WHPB/(°) 3.3~3.5 6.3 4.9
    4 α= 0.5WHPB α/(°) 1.7 3.1 2.5
    5 γ=Xmax γ/dB -30.0 -23.0 -24.0
    6 ηe /% 18.04 13.13 10.64
    7 γ由Gα决定 γ/dB -35.9 -35.7 -38.1
    8 ηe /% 45.98 73.17 75.42
    9 由需求ηe=90%决定 γ/dB -46.2 -40.8 -42.8
    10 α/(°) 2.38 3.44 2.73
    DownLoad: Download CSV

    Table  2  Comparison of the K-band downward brightness temperature and antenna temperature for type-B radiometer and analysis on the influence of environment under different sky conditions (let TS=238 K, ΔTS=22.5 K and other parameters for TB calculation are the same as Reference [31])

    行号 条件 计算参数 22.2 GHz (ηe=73.17%) 25.0 GHz (ηe=73.98%) 28.0 GHz (ηe=74.84%) 30.0 GHz (ηe=75.42%)
    1 晴空TB/K 31 28 17 16
    2 云天TB/K 42 33 29 30
    3 雨天TB /K 61 53 51 54
    4 β=1 晴空TA/K 59 55 45 43
    5 云天TA /K 68 60 55 56
    6 雨天TA /K 85 77 75 77
    7 δTB/K 3.5 3.4 3.2 3.2
    8 晴空TB/δTB 8.9 8.3 5.3 5.1
    9 云天TB/δTB 12.0 9.8 9.0 9.5
    10 雨天TB/δTB 17.5 15.8 15.8 17.1
    11 β=0 晴空TA/K 87 83 73 71
    12 云天TA /K 95 86 82 81
    13 雨天TA /K 108 101 98 99
    14 δTB/K 8.3 7.9 7.6 7.3
    15 晴空TB/δTB 3.8 3.5 2.2 2.2
    16 云天TB/δTB 5.1 4.2 3.8 4.1
    17 雨天TB/δTB 7.4 6.7 6.7 7.4
    DownLoad: Download CSV

    Table  3  Coefficient c for calibrating the environment temperature influence on K-band brightness temperature measured by type-B radiometer and the statistics to show the efficiency of calibration

    通道 频率/GHz 订正系数c 订正前拟合直线
    TBM=aTBC+b
    拟合度
    RMC2
    订正后拟合直线
    TBO=aTBC+b
    拟合度
    ROC2
    1 22.23 0.215088 y=1.1112x-2.4141 0.9537 y=0.9862x-0.2928 0.9763
    2 22.50 0.224503 y=1.1119x-1.1412 0.9571 y=0.9792x+0.9970 0.9763
    3 23.03 0.352293 y=1.1879x-0.9221 0.9194 y=0.9700x+2.1907 0.9680
    4 23.83 0.354430 y=1.2161x-0.7508 0.8861 y=0.9634x+2.4390 0.9563
    5 25.00 0.329222 y=1.2402x-0.9890 0.8174 y=0.9577x+2.0860 0.9395
    6 26.23 0.265974 y=1.2885x-2.6649 0.8019 y=0.9890x+0.6199 0.9431
    7 28.00 0.350330 y=1.0714x+0.3436 0.3846 y=1.0091x+0.0591 0.9138
    8 30.00 0.457644 y=0.1129x+12.659 0.0049 y=0.9314x+2.2196 0.7931
    DownLoad: Download CSV
  • [1]
    赵柏林.大气物理与大气探测的一些进展.北京大学学报, 1995, 31(3):323-337. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ503.008.htm
    [2]
    Westwater E, Crewell S, Matzler C.A review of surface-based microwave and millimeter-wave radiometric remote sensing of the troposphere.Radio Science Bulletin, 2004, 310:59-80.
    [3]
    赵从龙, 蔡化庆, 宋玉林, 等.对流层水汽和液态水的地基微波遥感探测.应用气象学报, 1991, 2(2):200-207. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19910226&flag=1
    [4]
    段英, 吴志会.利用地基遥感方法监测大气中汽态、液态水含量分布特征的分析.应用气象学报, 1999, 10(1):34-40. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990133&flag=1
    [5]
    雷恒池, 魏重, 沈志来, 等.微波辐射计探测降雨前水汽和云液水.应用气象学报, 2001, 12(增刊Ⅰ):73-79. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2001S1009.htm
    [6]
    Güldner J, Spänkuch D.Remote sensing of the thermodynamic state of the atmospheric boundary layer by ground-based microwave radiometry.Atmos Oceanic Technol, 2001, 18:925-933. doi:  10.1175/1520-0426(2001)018<0925:RSOTTS>2.0.CO;2
    [7]
    Ware R, Carpenter R, Güldner J, et al.A multi-channel radiometric profiler of temperature, humidity and cloud liquid.Rad Sci, 2003, 38, doi: 10.1029/2002rs002856.
    [8]
    Cimini D, Westwater E R, Gasiewaki A J, et al.Ground-based millimeter-and submillimiter-wave observations of low vapor and liquid water contents.IEEE Trans Geosci Remote Sensing, 2007, 45(7):2169-2180. doi:  10.1109/TGRS.2007.897450
    [9]
    Ware R, Cimini D, Campos E, et al.Thermodynamic and liquid profiling during the 2010 Winter Olympics.Atmos Res, 2013, 132:278-290. http://adsabs.harvard.edu/abs/2013AtmRe.132..278W
    [10]
    黄治勇, 徐桂荣, 王晓芳, 等.地基微波辐射资料在短时暴雨潜势预报中的应用.应用气象学报, 2013, 24(5):576-584. doi:  10.11898/1001-7313.20130507
    [11]
    Wang Zhenhui, Li Qing, Hu Fangchao, et al.Remote sensing of lightning by a ground-based microwave radiometer.Atmos Res, 2014, 150:143-150. doi:  10.1016/j.atmosres.2014.07.009
    [12]
    Westwater E R, Wang Zhenhui, Grody N C, et al.Remote sensing of temperature profiles from a combination of observations from the satellite-based microwave sounding unit and the ground-based profiler.J Atmos Oceanic Tech, 1985, 2:97-109. doi:  10.1175/1520-0426(1985)002<0097:RSOTPF>2.0.CO;2
    [13]
    张培昌, 王振会.大气微波遥感基础.北京:气象出版社, 1995.
    [14]
    Solheim F, Godwin J, Westwater E R, et al.Radiometric profiling of temperature, water vapor, and cloud liquid water using various inversion methods.Rad Sci, 1998, 33(2):393-404. doi:  10.1029/97RS03656
    [15]
    刘亚亚, 毛节泰, 刘钧, 等.地基微波辐射计遥感大气廓线的BP神经网络反演方法研究.高原气象, 2010, 29(6):1514-1523. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX201111009017.htm
    [16]
    郭伟, 王振会, 孙安平, 等.地基微波辐射计网络资料处理系统设计及实现.气象, 2010, 36(4):120-125. doi:  10.7519/j.issn.1000-0526.2010.04.022
    [17]
    Lu Qifeng, Bell W, Bauer P, et al.An Initial E-valuation of FY-3A Satellite Data.ECMWF Technical Memoran-dum 631, European Centre for Medium-Range Weather Forecasts, 2010:58.
    [18]
    Goldberg M D, David S C, Zhou L H.The limb adjustment of AMSU-A observations:Methodology and validation.Appl Meteor, 2001, 40:70-83. doi:  10.1175/1520-0450(2001)040<0070:TLAOAA>2.0.CO;2
    [19]
    Weng F, Zhao L, Ferraro R R, et al.Advanced microwave sounding unit cloud and precipitation algorithms.Radio Sci, 2003, 38(4):8068-8096. https://www.researchgate.net/publication/245268225_Advanced_Microwave_Sounding_Unit_AMSU_cloud_and_precipitation_algorithms
    [20]
    Weng F, Yang H, Zou X.On convertibility from antenna to sensor brightness temperature for ATMS.IEEE Geoscience and Remote Sensingletters, 2013, 10(4):771-775. doi:  10.1109/LGRS.2012.2223193
    [21]
    王振会, 曹雪芬, 黄建松, 等.基于气象资料变化特征和辐射传输模式的微波辐射计工作状态分析.大气科学学报, 2014, 37(1):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201401001.htm
    [22]
    敖雪, 王振会, 徐桂荣, 等.微波辐射计亮温观测质量控制研究.气象科学, 2013, 33(2):130-137. doi:  10.3969/2012jms.0082
    [23]
    陈向东, 张祖荫, 林士杰, 等.八毫米微波天空温度.华中科技大学学报:自然科学版, 1985, 13(4):105-110. http://www.cnki.com.cn/Article/CJFDTOTAL-HZLG198504016.htm
    [24]
    Ulaby F T, Moore R K, Fung A K.Microwave Remote Sensing:Active and Passive.New York:Addison-Wesley Publishing Company, 1981:1-2162.
    [25]
    Rose T H, Czekala H.RPG's Atmospheric Remote Sensing Profilers Operating Manual.Version 8, 2009.
    [26]
    Radiometrics Corporation.Profiler Operator's Manual.http://radiometrics.com, 2007.
    [27]
    张培昌, 杜秉玉, 汤达章.雷达气象学.北京:气象出版社, 2001:1-511.
    [28]
    Rahmat-Sammi Y, A Hoferer R, Mosallaei H.Beam efficiency of reflector antennas:The simple formula.IEEE Trans Ant Prog Mag, 1998, 40(5):82-87. doi:  10.1109/74.735967
    [29]
    叶云裳."神舟四号"飞船微波辐射计天线的主波束效率.空间科学学报, 2003, 23(6):459-466. http://www.cnki.com.cn/Article/CJFDTOTAL-KJKB200306007.htm
    [30]
    何文英, 陈洪滨, 宣越健, 等.几种地表微波比辐射率变化特征的地面观测.地球物理学进展, 2010, 25(6):1983-1993. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201006016.htm
    [31]
    Waters J W.Absorption and Emission of Microwave Radiation by Atmospheric Gases//Methods of Experimental Physics, 1976.
  • 加载中
  • -->

Catalog

    Figures(2)  / Tables(3)

    Article views (3436) PDF downloads(945) Cited by()
    • Received : 2014-04-06
    • Accepted : 2014-09-10
    • Published : 2014-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint