Citation: | Gao Hui, Xue Feng. Semiannual oscillation of the extratropical circulation in the Southern Hemisphere and its numerical simulation. J Appl Meteor Sci, 2006, 17(3): 267-272. |
The semiannual oscillation (SAO) of the atmospheric circulations in the extratropic regions is one of the unique characteristics in the Southern Hemisphere. Based on the NCEP/NCAR reanalysis datasets of the sea level pressure (SLP) and the geopotential height from January 1979 to December 2000 the oscillation is studied. Results show that the SAO is most active in the extratropic regions in the lower troposphere but the tropics in the middle-higher level. The extratropical SAO of SLP is found to be most significant in 40°S and 65°S, i.e., the two branches of the Antarctic oscillation (AAO) or named as the Southern Hemisphere annular mode (SAM), where each variance percentage of the half-year period exceeds 70%. That is to say that the anti-phase relationship for the annual cycle of SLP between the two latitudes is primarily caused by their SAO components. But the SAO is not remarkable between these two latitudes, especially in 55°S, i.e., the node position of the standing wave of the AAO. In 55°S, the variance percentage of SAO is less than 20% while that of the annual cycle is greater than 70%. Results also indicate that the phases at the latitudes of 40°S and 65°S are inconsistent, with maximam variance percentages occurring in March and September while minimums in June and December respectively in 40°S, but maximums in January and July and minimums in April and October respectively in 65°S. In other words, the phase of the SAO in the near-polar latitude has a one-month lag than in the middle counterpart.At present, most of the general circulation models (GCMs) are poor in simulating the characteristics of the extratropical SAO in the Southern Hemisphere. So the SAO is used widely as a criterion to verify a GCM's simulation skill. Based on the above results, a nine-level atmospheric general circulation model developed in the Institute of Atmospheric Physics (IAP 9L AGCM) is employed to simulate the SAO. In general, the model is successful in simulating the SAO of SLP along 65°S, with its intensity some what weaker than the observation. On the other hand, the IAP 9L AGCM fails to simulate the SAO along 40°S.
[1] |
Reuter E.Die synoptische Darstellung der halbjährigen Druckwelle.Veröff Geophys, 1936, 7: 257-295.
|
[2] |
Wahl E.Untersuchungen ǜber den jährlichen Luftdruckgang.Veröff Meteoro, 1942, 4:3-71.
|
[3] |
Schwerdtfeger W.Die halbjährige Periode des meridionalen Temperature gradienten in der Troposphäre und des Luftdrucks am Boden in Sǜdpolargebiet, ihre Erscheinungsform und Kausalen Zusammenhänge.Beitr Phys Atmos, 1962, 35:234-244.
|
[4] |
Hsu C P F, Wallace J M.The global distribution of the annual and semiannual cycles in precipitation.Mon Wea Rev, 1976, 104(9): 1093-1101. doi: 10.1175/1520-0493(1976)104<1093:TGDOTA>2.0.CO;2
|
[5] |
White G H, Wallace J M.The global distribution of the annual and semiannual cycles in surface temperature.Mon Wea Rev, 1978, 106(6):901-905. doi: 10.1175/1520-0493(1978)106<0901:TGDOTA>2.0.CO;2
|
[6] | |
[7] |
Tompson D W J, Wallace J M.Annular modes in the extratropical circulation, Part Ⅰ:month-to-month variability.J Climate, 2000, 13(5):1000-1016. doi: 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2
|
[8] |
范丽军, 李建平, 韦志刚, 等.北极涛动和南极涛动的年变化特征.大气科学, 2003, 27(3): 419-424. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200303010.htm
|
[9] |
薛峰, 王会军, 何金海.马斯克林高压和澳大利亚高压的年际变化及其对东亚夏季降水的影响.科学通报, 2003, 48(3): 287-291. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200303017.htm
|
[10] |
高辉, 薛峰, 王会军.南极涛动年际变化对江淮梅雨的影响及预报意义.科学通报, 2003, 48(增刊2): 87-92. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2003&filename=KXTB2003S2015&v=MjMwNzJUM3FUcldNMUZyQ1VSTDJmWStadUZpRGxVYi9CTGpYZmJMRzRIdEt2clk5RVlZUjhlWDFMdXhZUzdEaDE=
|
[11] |
Fan K, Wang H J.Antarctic oscillation and the dust weather frequency in North China.Geophys Res Lett, 2004, 31, L10201, doi: 10.1029/2004GL019465.
|
[12] |
张元箴, 王淑静.南半球环流与西太平洋副热带高压和台风群中期活动的关系.应用气象学报, 1999, 10(1): 80-87. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990136&flag=1
|
[13] |
Xu J S, Von S H, Van L H.The performance of four spectral GCMs in the Southern Hemisphere:the January and July climatology and the semiannual wave.J Climate, 1990, 3(1):53-71. doi: 10.1175/1520-0442(1990)003<0053:TPOFSG>2.0.CO;2
|
[14] |
Hines K M, Bromwich D H, Marshall G.Artificial surface pressure trends in the NCEP-NCAR reanalysis over the southern ocean and Antarctica.J Climate, 2000, 13(22): 3940-3952. doi: 10.1175/1520-0442(2000)013<3940:ASPTIT>2.0.CO;2
|
[15] |
Zhang X H.Dynamical framework of IAP nine-level atmospheric model.Adv Atmos Sci, 1990, 7(1):67-77. doi: 10.1007/BF02919169
|
[16] |
毕训强.IAP 9层大气环流模式与气候数值模拟.北京:中国科学院大气物理研究所, 1993.
|
[17] |
Liang X Z.Description of a nine-level grid atmospheric general circulation model.Adv Atmos Sci, 1996, 13(3): 269-298. doi: 10.1007/BF02656847
|
[18] |
王召民, 黄士松.南北极海冰的时空变化特征.气象科学, 1996, 16(4): 299-307. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199604000.htm
|
[19] |
Zhou T J, Yu R C.Sea-surface temperature induced variability of the Southern annular mode in an atmospheric general circulation model.Geophys Res Lett, 2004, 31, L24206, doi: 10.1029/ 2004G L021473.
|