留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华北一次层状云系暖区水汽和液态水分布特征

聂皓浩 王婉 杨洋 林晓萌 郭晓军 李晓波

聂皓浩, 王婉, 杨洋, 等. 华北一次层状云系暖区水汽和液态水分布特征. 应用气象学报, 2024, 35(2): 196-210. DOI:  10.11898/1001-7313.20240206..
引用本文: 聂皓浩, 王婉, 杨洋, 等. 华北一次层状云系暖区水汽和液态水分布特征. 应用气象学报, 2024, 35(2): 196-210. DOI:  10.11898/1001-7313.20240206.
Nie Haohao, Wang Wan, Yang Yang, et al. Distribution characteristics of water vapor and liquid water in the warm zone of a stratiform cloud in North China. J Appl Meteor Sci, 2024, 35(2): 196-210. DOI:  10.11898/1001-7313.20240206.
Citation: Nie Haohao, Wang Wan, Yang Yang, et al. Distribution characteristics of water vapor and liquid water in the warm zone of a stratiform cloud in North China. J Appl Meteor Sci, 2024, 35(2): 196-210. DOI:  10.11898/1001-7313.20240206.

华北一次层状云系暖区水汽和液态水分布特征

DOI: 10.11898/1001-7313.20240206
资助项目: 

国家重点研发计划课题 2019YFC1510301

天津市自然科学基金项目 20JCYBJC00010

天津市气象局一般项目 202415ybxm11

中国气象局沈阳大气环境研究所联合开放基金 2023SYIAEKFMS14

详细信息
    通信作者:

    王婉, 邮箱: vvan1981@126.com

Distribution Characteristics of Water Vapor and Liquid Water in the Warm Zone of a Stratiform Cloud in North China

  • 摘要: 基于机载微波辐射计、地基微波辐射计和Ka波段云雷达3种遥感资料, 结合FY-4A气象卫星、气象观测站、天气雷达及再分析资料, 研究2021年5月15日一次华北降水性层状云系暖区的水汽和液态水分布特征。结果表明:水汽和液态水的水平分布不均, 飞机平飞时机载微波辐射计探测的积分水汽含量和液态水路径起伏变化, 最大值分别为4.00 cm和1.87 mm, 随着暖区云顶高度和云层厚度降低, 二者分别降至0.89 cm和0.13 mm。随着降水发生发展, 地基微波辐射计探测的积分水汽含量和液态水路径均出现跃增, 峰值分别为8.62 cm和3.85 mm, 水汽变化滞后于液态水, 垂直方向上液态水含量的累积区厚度、最大值及所在高度均随降水先增后减, 液态水的时空演变对暖区降水及增雨作业时机和部位的判识有重要指示意义。云雷达探测的液态水含量也出现跃增, 在1 km高度以下反射率因子较大、粒子下落速度及离散程度较大时段, 液态水丰富, 对应降水量较大, 粒子碰并是暖区降水的主要机制。
  • 图  1  地基观测设备布局(填色为地形高度)

    Fig. 1  Layout of ground-based observation equipments (the shaded denotes elevation)

    图  2  2021年5月15日500 hPa位势高度(蓝色等值线,单位:dagpm)、500 hPa温度(红色等值线,单位:℃)、850 hPa风场(风羽) 和850 hPa相对湿度(填色)(红色框为华北地区)

    Fig. 2  500 hPa height (the blue contour, unit:dagpm), 500 hPa temperature (the red contour, unit:℃), 850 hPa wind (the barb) and 850 hPa relative humidity (the shaded) on 15 May 2021 (the red box denotes North China)

    图  3  2021年5月15日石家庄SA波段雷达组合反射率因子(填色)

    (黑色粗实线为飞行轨迹)

    Fig. 3  Composite reflectivity (the shaded) measured by SA radar deployed at Shijiazhuang Station on 15 May 2021

    (the black thick solid line denotes the flight track)

    图  4  2021年5月15日天津黑牛城站与河北栾城站逐小时降水量

    (虚线框为飞机探测时段)

    Fig. 4  Hourly precipitation at Heiniucheng Station of Tianjin and Luancheng Station of Hebei on 15 May 2021

    (the dotted box denotes the aircraft detection period)

    图  5  2021年5月15日机载微波辐射计探测的积分水汽含量、液态水路径时间演变

    (红色框为积分水汽含量和液态水路径的极值时段)

    Fig. 5  Temporal evolution of integrated water vapor content, liquid water path measured by G-band water vapor radiometer on 15 May 2021

    (the red box denotes the extreme value periods of integrated water vapor content and liquid water path)

    图  6  2021年5月15日FY-4A反演的云类型(填色)

    (红色实线为飞行轨迹)

    Fig. 6  Cloud type (the shaded) retrieved by FY-4A on 15 May 2021

    (the red solid line denotes the flight track)

    图  7  2021年5月15日地基微波辐射计探测的积分水汽含量和液态水路径的时间演变与不同时刻水汽密度和液态水含量以及温度和相对湿度的垂直廓线

    (灰色框为降水时段)

    Fig. 7  Temporal evolution of integrated water vapor content and liquid water path, vertical distribution profiles of vapor density and liquid water content, temperature and relative humidity at different times observed by ground-based microwave radiometer on 15 May 2021

    (the gray box denotes the period of precipitation)

    图  8  2021年5月15日云雷达探测的反射率因子、径向速度、谱宽和液态水含量的时间演变

    Fig. 8  Temporal evolution of reflectivity factor, radial velocity, spectral width and liquid water content observed by cloud radar on 15 May 2021

    图  9  2021年5月15日云雷达探测的不同时刻液态水含量的垂直廓线

    Fig. 9  Vertical profiles of liquid water content at different times observed by cloud radar on 15 May 2021

    表  1  地基微波辐射计探测的不同地区上空暖区的水汽和液态水跃增特征比较

    Table  1  Comparison of jumping increase characteristics of water vapor and liquid water in warm zone over different regions detected by ground-based microwave radiometer

    时间 地区 水汽跃增特征 液态水跃增特征
    积分水汽含量 水汽密度 液态水路径 液态水含量
    跃增时间 峰值/cm 峰值/(g·m-3) 峰值高度/km 跃增时间 峰值/mm 峰值/(g·m-3) 峰值高度/km
    2017-07 四川成都[42] 降水临近 8.5 降水临近 2.5 0.8 4~6
    2020-07 祁连山东段[43] 降水前20 min 3.63 14 小于1 降水前20 min 3.28 1.5 1~2
    2021-05 华北地区 降水开始 8.62 25.43 2.5 降水前1.5 h 3.85 0.66 2.25
    下载: 导出CSV
  • [1] 聂皓浩, 王婉, 郭晓军, 等.基于机载微波辐射计的天津地区典型层状云水汽和液态水分布特征分析.干旱气象, 2023, 41(4):599-606. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX202304009.htm

    Nie H H, Wang W, Guo X J, et al. Distribution characteristics of typical stratiform clouds water vapor and liquid water in Tianjin Area based on airborne microwave radiometer. J Arid Meteor, 2023, 41(4): 599-606. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX202304009.htm
    [2] 袁健, 赵姝慧, 张维全, 等. 云中液态水含量在人工影响天气中的应用. 安徽农业科学, 2011, 39(1): 508;602. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201101197.htm

    Yuan J, Zhao S H, Zhang W Q, et al. The application of liquid water content in cloud on weather modification. J Anhui Agric Sci, 2011, 39(1): 508;602. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201101197.htm
    [3] 陶法, 官莉, 张雪芬, 等. Ka波段云雷达晴空回波垂直结构及变化特征. 应用气象学报, 2020, 31(6): 719-728. doi:  10.11898/1001-7313.20200607

    Tao F, Guan L, Zhang X F, et al. Variation and vertical structure of clear-air echo by Ka-band cloud radar. J Appl Meteor Sci, 2020, 31(6): 719-728. doi:  10.11898/1001-7313.20200607
    [4] 黄毅梅, 周毓荃, 杨敏. 利用3 mm云雷达资料分析混合相云垂直结构及过冷水分布. 高原气象, 2017, 36(1): 219-228. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201701021.htm

    Huang Y M, Zhou Y Q, Yang M. Using 3 mm cloud radar data to analyze frontal mixed cloud vertical structure and supercooled water. Plateau Meteor, 2017, 36(1): 219-228. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201701021.htm
    [5] 姬雪帅, 王丽婧, 郭宏, 等. 基于多源观测资料对张家口一次雨雪天气降水相态特征的分析. 干旱气象, 2022, 40(3): 507-515. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX202203016.htm

    Ji X S, Wang L J, Guo H, et al. Analysis of characteristics of precipitation phase during a rain-snow weather process in Zhangjiakou based on multi-source observation data. J Arid Meteor, 2022, 40(3): 507-515. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX202203016.htm
    [6] 康增妹, 李忠亮, 刘伟, 等. 河北省一次降水云系云物理结构的飞机探测研究. 气象与环境学报, 2019, 35(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201904001.htm

    Kang Z M, Li Z L, Liu W, et al. Aircraft observations on physical properties of precipitation clouds in Hebei Province. J Meteor Environ, 2019, 35(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201904001.htm
    [7] Zuo D F, Liu D T, Zhao D L, et al. Liquid water determination by airborne millimeter cloud radar and in situ size distribution measurements. Atmos Res, 2023, 284. DOI:  10.1016/j.atmosres.2023.106607.
    [8] 刘黎平, 宗蓉, 齐彦斌, 等. 云雷达反演层状云微物理参数及其与飞机观测数据的对比. 中国工程科学, 2012, 14(9): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201209010.htm

    Liu L P, Zong R, Qi Y B, et al. Microphysical parameters retrieval by cloud radar and comparing with aircraft observation in stratiform cloud. Eng Sci, 2012, 14(9): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201209010.htm
    [9] 姚志刚, 杨超, 赵增亮, 等. 毫米波雷达反演层状云液态水路径研究. 高原气象, 2018, 37(1): 223-233. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201801018.htm

    Yao Z G, Yang C, Zhao Z L, et al. Study of the stratiform cloud liquid water path retrieval from the millimeter wave radar data. Plateau Meteor, 2018, 37(1): 223-233. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201801018.htm
    [10] 邹明龙, 刘黎平, 郑佳锋, 等. 降水条件下的云雷达与微波辐射计反演液态水含量对比分析. 热带气象学报, 2021, 37(4): 669-680. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX202104014.htm

    Zou M L, Liu L P, Zheng J F, et al. Comparative analysis of liquid water content retrieved by cloud radar and microwave radiometer during precipitation events. J Trop Meteor, 2021, 37(4): 669-680. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX202104014.htm
    [11] 谢晓林, 刘黎平. 云雷达联合微波辐射计反演混合性降水层云液态水含量的方法研究. 暴雨灾害, 2016, 35(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201601001.htm

    Xie X L, Liu L P. Retrieval of liquid water content profiles in mixed and rainy stratus clouds by combing cloud radar and microwave radiometer. Torrential Rain Disasters, 2016, 35(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201601001.htm
    [12] 傅新姝, 谈建国. 地基微波辐射计探测资料质量控制方法. 应用气象学报, 2017, 28(2): 209-217. doi:  10.11898/1001-7313.20170208

    Fu X S, Tan J G. Quality control of temperature and humidity profile retrievals from ground-based microwave radiometer. J Appl Meteor Sci, 2017, 28(2): 209-217. doi:  10.11898/1001-7313.20170208
    [13] 王洪, 周后福, 王琛, 等. 基于微波辐射计和探空的FY-4A温度廓线检验. 应用气象学报, 2023, 34(3): 295-308. doi:  10.11898/1001-7313.20230304

    Wang H, Zhou H F, Wang C, et al. Accuracy validation of FY-4A temperature profile based on microwave radiometer and radiosonde. J Appl Meteor Sci, 2023, 34(3): 295-308. doi:  10.11898/1001-7313.20230304
    [14] 张秋晨, 龚佃利, 王俊, 等. 基于地基微波辐射计反演的济南地区水汽及云液态水特征. 气象与环境学报, 2017, 33(5): 35-43. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201705005.htm

    Zhang Q C, Gong D L, Wang J, et al. Characteristics of water vapor and liquid water content retrieved by ground-based microwave radiometer in Jinan. J Meteor Environ, 2017, 33(5): 35-43. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201705005.htm
    [15] 段英, 吴志会. 利用地基遥感方法监测大气中汽态、液态水含量分布特征的分析. 应用气象学报, 1999, 10(1): 34-40. http://qikan.camscma.cn/article/id/19990133

    Duan Y, Wu Z H. Analysis of monitoring the distribution characteristics of vapor and liquid water content in the atmosphere by ground-based remote sensing method. J Appl Meteor Sci, 1999, 10(1): 34-40. http://qikan.camscma.cn/article/id/19990133
    [16] 陈树成, 史静, 王彦, 等. 基于地基微波辐射计遥感的天津大气水汽和液态水特征. 气象与环境学报, 2019, 35(6): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201906006.htm

    Chen S C, Shi J, Wang Y, et al. Characteristics of atmospheric water vapor and liquid water over Tianjin identified by remote sensing data from ground-based microwave radiometer. J Meteor Environ, 2019, 35(6): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201906006.htm
    [17] Madhulatha A, Rajeevan M, Venkat R M, et al. Nowcasting severe convective activity over southeast India using ground-based microwave radiometer observations. J Geophys Res Atmos, 2013, 118(1): 1-13.
    [18] 周冰雪, 朱朗峰, 吴昊, 等. 微波辐射计反演大气廓线精度及降水预报应用. 应用气象学报, 2023, 34(6): 717-728. doi:  10.11898/1001-7313.20230607

    Zhou B X, Zhu L F, Wu H, et al. Accuracy of atmospheric profiles retrieved from microwave radiometer and its application to precipitation forecast. J Appl Meteor Sci, 2023, 34(6): 717-728. doi:  10.11898/1001-7313.20230607
    [19] 王婉, 雷恒池, 郭晓军, 等. GVR机载微波辐射计反演算法适用性分析. 气象科技, 2018, 46(3): 485-489. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201803010.htm

    Wang W, Lei H C, Guo X J, et al. Applicability analysis of retrieval algorithm for GVR airborne microwave radiometer. Meteor Sci Technol, 2018, 46(3): 485-489. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201803010.htm
    [20] Warner J, Drake J F. Field tests of an airborne remote sensing technique for measuring the distribution of liquid water in convective cloud. J Atmos Ocean Technol, 1988, 5(6): 833-843. doi:  10.1175/1520-0426(1988)005<0833:FTOAAR>2.0.CO;2
    [21] Drake J, Warner J. A theoretical study of the accuracy of tomographic retrieval of cloud liquid with an airborne radiometer. J Atmos Ocean Technol, 1988, 5: 844-857. doi:  10.1175/1520-0426(1988)005<0844:ATSOTA>2.0.CO;2
    [22] Bush B C, Valero F P J, Haggerty J A. Clear-sky column water vapor retrievals using the airborne imaging microwave radiometer(AIMR). J Geophys Res Atmos, 2007, 112(D20). DOI:  10.1029/2006JD008015.
    [23] 雷恒池, 金德镇, 魏重, 等. 机载对空微波辐射计及云液态水含量的测量. 科学通报, 2003, 48(增刊Ⅱ): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2003S2006.htm

    Lei H C, Jin D Z, Wei C, et al. Airborne upward-looking microwave radiometer and measurement of column cloud liquid water content. Chinese Sci Bull, 2003, 48(Suppl Ⅱ): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2003S2006.htm
    [24] 江芳, 魏重, 雷恒池, 等. 机载微波辐射计测云中液态水含量(Ⅱ): 反演方法. 高原气象, 2004, 23(1): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200401005.htm

    Jiang F, Wei C, Lei H C, et al. Measurement of column cloud liquid water content by airborne upward-looking microwave radiometer(Ⅱ): Retrieval method. Plateau Meteor, 2004, 23(1): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200401005.htm
    [25] 金德镇, 雷恒池, 谷淑芳, 等. 机载微波辐射计测云中液态含水量. 气象学报, 2004, 62(6): 868-874. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200406015.htm

    Jin D Z, Lei H C, Gu S F, et al. Measurement of column cloud liquid water content by airborne upward-looking microwave radiometer. Acta Meteor Sinica, 2004, 62(6): 868-874. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200406015.htm
    [26] 梁谷, 雷恒池, 李燕, 等. 机载微波辐射计云中含水量的探测. 高原气象, 2007, 26(5): 1105-1111. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200705025.htm

    Liang G, Lei H C, Li Y, et al. A column cloud liquid water content measured by airborne upward-looking microware radiometer. Plateau Meteor, 2007, 26(5): 1105-1111. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200705025.htm
    [27] Pazmany A L. An Operational G-band(183 GHz) Water Vapor Radiometer//The 9th Specialist Meeting on Microwave and Remote Sensing Applications, 2006.
    [28] Pazmany A L. A compact 183-GHz radiometer for water vapor and liquid water sensing. IEEE Trans Geosci Remote Sens, 2007, 45(7): 2202-2206. doi:  10.1109/TGRS.2006.888104
    [29] Wang W, Pazmany A, Lei H C, et al. Measurement of supercooled liquid water path in cold clouds based on a 183 GHz airborne microwave radiometer. Atmos Res, 2023, 285. DOI:  10.1016/j.atmosres.2023.106655.
    [30] 王婉, 雷恒池, 聂皓浩, 等. 基于机载微波辐射计探测大气水汽通道饱和问题研究. 气象学报, 2021, 79(3): 509-520. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202103011.htm

    Wang W, Lei H C, Nie H H, et al. A study on channel saturation of atmospheric water vapor detection based on airborne microwave radiometer. Acta Meteor Sinica, 2021, 79(3): 509-520. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202103011.htm
    [31] 王烁, 张佃国, 王文青, 等. 初冬一次层状云较弱云区垂直结构的飞机观测. 应用气象学报, 2021, 32(6): 677-690. doi:  10.11898/1001-7313.20210604

    Wang S, Zhang D G, Wang W Q, et al. Aircraft measurement of the vertical structure of a weak stratiform cloud in early winter. J Appl Meteor Sci, 2021, 32(6): 677-690. doi:  10.11898/1001-7313.20210604
    [32] 郭学良, 付丹红, 郭欣, 等. 我国云降水物理飞机观测研究进展. 应用气象学报, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601

    Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601
    [33] 王婉, 雷恒池, 王兆宇, 等. 机载微波辐射计亮温数据中RFI识别方法研究. 高原气象, 2018, 37(4): 1033-1041. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201804015.htm

    Wang W, Lei H C, Wang Z Y, et al. Method study on identification of radio-frequency interference signal from airborne microwave radiometer. Plateau Meteor, 2018, 37(4): 1033-1041. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201804015.htm
    [34] 王婉, 聂皓浩, 雷恒池, 等. 基于183 GHz机载微波辐射计探测水汽和云中液态水反演算法研究. 气象, 2023, 49(5): 542-550. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202305003.htm

    Wang W, Nie H H, Lei H C, et al. Retrieval method of precipitation water vapor and cloud liquid water path based on 183 GHz airborne microwave radiometer. Meteor Mon, 2023, 49(5): 542-550. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202305003.htm
    [35] 王志诚, 张雪芬, 茆佳佳, 等. 不同天气条件下地基微波辐射计探测性能比对. 应用气象学报, 2018, 29(3): 282-295. doi:  10.11898/1001-7313.20180303

    Wang Z C, Zhang X F, Mao J J, et al. Comparison analysis on detection performance of ground-based microwave radiometers under different weather conditions. J Appl Meteor Sci, 2018, 29(3): 282-295. doi:  10.11898/1001-7313.20180303
    [36] 刘晓璐, 刘东升, 郭丽君, 等. 国产MWP967KV型地基微波辐射计探测精度. 应用气象学报, 2019, 30(6): 731-744. doi:  10.11898/1001-7313.20190609

    Liu X L, Liu D S, Guo L J, et al. The observational precision of domestic MWP967KV ground-based microwave radiometer. J Appl Meteor Sci, 2019, 30(6): 731-744. doi:  10.11898/1001-7313.20190609
    [37] 林晓萌, 尉英华, 张楠, 等. 基于地基遥感设备构建遥感探空廓线. 应用气象学报, 2022, 33(5): 568-580. doi:  10.11898/1001-7313.20220505

    Lin X M, Wei Y H, Zhang N, et al. Construction of air-sounding-profile system based on foundation-remote-sensing equipment. J Appl Meteor Sci, 2022, 33(5): 568-580. doi:  10.11898/1001-7313.20220505
    [38] 崔鹏, 王素娟, 陆风, 等. FY-4A/AGRI海表温度产品和质量检验. 应用气象学报, 2023, 34(3): 257-269. doi:  10.11898/1001-7313.20230301

    Cui P, Wang S J, Lu F, et al. FY-4A/AGRI sea surface temperature product and quality validation. J Appl Meteor Sci, 2023, 34(3): 257-269. doi:  10.11898/1001-7313.20230301
    [39] 郭雪星, 瞿建华, 叶凌梦, 等. 基于朴素贝叶斯的FY-4A/AGRI云检测方法. 应用气象学报, 2023, 34(3): 282-294. doi:  10.11898/1001-7313.20230303

    Guo X X, Qu J H, Ye L M, et al. FY-4A/AGRI cloud detection method based on naive Bayesian algorithm. J Appl Meteor Sci, 2023, 34(3): 282-294. doi:  10.11898/1001-7313.20230303
    [40] Murty A, Selvam A, Devara P, et al. 11-year warm cloud seeding experiment in Maharashtra State, India. J Weather Modif, 2000, 32: 10-20.
    [41] 郭学良, 方春刚, 卢广献, 等. 2008—2018年我国人工影响天气技术及应用进展. 应用气象学报, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601

    Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601
    [42] 宋静, 傅文伶, 周天煜. 基于地基微波辐射计资料对成都双流机场两次雷雨过程的分析. 沙漠与绿洲气象, 2020, 14(2): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX202002008.htm

    Song J, Fu W L, Zhou T Y. Analysis of two thunderstorm events at Chengdu Shuangliu Airport on observations of ground-based microwave radiometer. Desert Oasis Meteor, 2020, 14(2): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX202002008.htm
    [43] 把黎, 奚立宗, 蔡迪花, 等. 基于微波辐射计资料的祁连山东段大气水汽和液态水时空变化特征. 干旱气象, 2023, 41(1): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX202301007.htm

    Ba L, Xi L Z, Cai D H, et al. Spatial and temporal variation characteristics of atmospheric water vapor and liquid water in eastern section of the Qilian Mountains based on microwave radiometer data. J Arid Meteor, 2023, 41(1): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX202301007.htm
    [44] Borg L A, Holz R E, Turner D D. Investigating cloud radar sensitivity to optically thin cirrus using collocated Raman lidar observations. Geophys Res Lett, 2011, 38(5). DOI:  10.1029/2010GL046365.
  • 加载中
图(9) / 表(1)
计量
  • 摘要浏览量:  101
  • HTML全文浏览量:  16
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-08
  • 修回日期:  2024-01-30
  • 刊出日期:  2024-03-31

目录

    /

    返回文章
    返回