留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多上行先导模型先导传播速率比优化及模拟研究

王雪雯 谭涌波 林雨荷 吴萌

王雪雯, 谭涌波, 林雨荷, 等. 多上行先导模型先导传播速率比优化及模拟研究. 应用气象学报, 2024, 35(2): 237-246. DOI:  10.11898/1001-7313.20240209..
引用本文: 王雪雯, 谭涌波, 林雨荷, 等. 多上行先导模型先导传播速率比优化及模拟研究. 应用气象学报, 2024, 35(2): 237-246. DOI:  10.11898/1001-7313.20240209.
Wang Xuewen, Tan Yongbo, Lin Yuhe, et al. Optimization and simulation of leader propagation rate ratio in multiple upward leader model. J Appl Meteor Sci, 2024, 35(2): 237-246. DOI:  10.11898/1001-7313.20240209.
Citation: Wang Xuewen, Tan Yongbo, Lin Yuhe, et al. Optimization and simulation of leader propagation rate ratio in multiple upward leader model. J Appl Meteor Sci, 2024, 35(2): 237-246. DOI:  10.11898/1001-7313.20240209.

多上行先导模型先导传播速率比优化及模拟研究

DOI: 10.11898/1001-7313.20240209
资助项目: 

国家自然科学基金面上项目 42275075

灾害天气国家重点实验室开放课题 2023LASW-A03

详细信息
    通信作者:

    谭涌波, 邮箱: ybtan@ustc.edu

Optimization and Simulation of Leader Propagation Rate Ratio in Multiple Upward Leader Model

  • 摘要: 下行先导与上行先导的相对速率比可能是闪电连接过程的关键因子之一, 随机闪电连接模式中先导相对传播速率比不能准确描述下行与上行先导的相对传播距离比值。考虑到光学观测事实及雷暴电场环境, 在已有多上行先导三维随机参数化方案的基础上对下行负地闪开展模拟, 改进背景电场模块设置, 并植入下行负先导与上行正先导相对传播速率模块, 以先导传播距离为依据设置先导相对传播速率。将改进后的模型应用于平顶单建筑物触发多上行先导现象的模拟, 与改进前相比, 该模型的闪击距、上行先导长度等参数与自然闪电一致性更好;在此基础上对发生在广州珠江新城高建筑物群上的地闪连接过程进行模拟, 改进后的模型能够较好还原复杂建筑物群的闪电发生规律。城市建筑物群的雷击特征参量主要由各个建筑物的形状特征、相对位置以及相对高度等因素所决定, 但仍有特殊事件发生, 当下行先导的某一分支与建筑物空间距离临近时, 会在建筑物顶部起始上行先导并连接。
  • 图  1  先导相对发展示意图

    (黑色几何体为建筑物,蓝线为下行负先导已发展通道,黑线为上行正先导已发展通道,红线为该段时间步长内新发展的下行与上行先导通道点)

    Fig. 1  Schematic diagram of relative development of leaders

    (the black geometric body denotes the building, the blue line denotes the development for downward negative leader, the black line denotes the development of a positive leading channel for the upward positive leader, the red line denotes the new development of downward and upward leader points within this time step)

    图  2  模式改进前后模拟地闪个例对比

    (黑色几何体为建筑物,蓝线为下行负先导,红线为上行正先导,下同) (a)模式改进前,(b)改进背景电场模块后,(c)改进背景电场与先导相对传播模块后

    Fig. 2  Comparison of simulated cloud-to-ground lightning cases before and after model modification

    (the black geometric body denotes the building, the blue line denotes the downward negative leader, the red line denotes the upward positive leader, similarly hereinafter) (a)before model improved, (b)after the background electric field module in the model improved, (c)after the background electric field and leader relative propagation module of the model improved

    图  3  一次地闪个例的模拟

    Fig. 3  Simulation of a cloud-to-ground lightning case

    表  1  模式改进前后不同建筑物高度下闪击距及上行先导最大长度的统计结果

    Table  1  Statistical results of striking distance and upward leader length at different building heights before and after model improved

    建筑物高度/m 闪击距/m 上行先导最大长度/m
    改进前 改进后 改进前 改进后
    100 25~166.6 89.2~229.9 5~76 79~187
    200 25~261.2 263.9~456.7 12~159 165~282
    300 30~306.8 332.8~520.8 17~267 213~418
    400 30~317.1 404.4~613.8 22~345 376~489
    500 30~330.2 412.4~737.0 21~378 405~549
    下载: 导出CSV

    表  2  广州珠江新城高建筑物群的观测与模拟对比

    Table  2  Comparison of observations and simulation results of high-rise buildings in the Pearl River New Town, Guangzhou

    建筑物 高度/m 观测 模拟
    平均2D闪击距/m 仅1个上行连接先导的概率/% 平均3D闪击距/m 仅1个上行连接先导的概率/%
    广州塔 600 920 82 679.8 73
    东塔 530 280 36 344.3 14
    西塔 440 590 89 205.0 58
    广晟国际大厦 360 530 91 367.9 84
    珠江城 318 244.8 20
    利通大厦 310 241.0 0
    越秀金融大厦 310 175.5 0
    富力盈凯大厦 303
    下载: 导出CSV
  • [1] 郄秀书, 张其林, 袁铁, 等.雷电物理学.北京:科学出版社, 2013.

    Qie X S, Zhang Q L, Yuan T, et al. Lightning Physics. Beijing: Science Press, 2013.
    [2] Araujo L S, Guimarães M B, Pedrosa A G, et al. Assessing Events of Upward Lightning Measured at Morro do Cachimbo Station//2012 International Conference on Lightning Protection(ICLP). IEEE, 2012: 1-4.
    [3] Cummins K L, Krider E P, Olbinski M, et al. A case study of lightning attachment to flat ground showing multiple unconnected upward leaders. Atmos Res, 2018, 202: 169-174. doi:  10.1016/j.atmosres.2017.11.007
    [4] 吕伟涛, 陈绿文, 马颖, 等. 广州高建筑物雷电观测与研究10年进展. 应用气象学报, 2020, 31(2): 129-145. doi:  10.11898/1001-7313.20200201

    Lü W T, Chen L W, Ma Y, et al. Advances of observation and study on tall-object lightning in Guangzhou over the last decade. J Appl Meteor Sci, 2020, 31(2): 129-145. doi:  10.11898/1001-7313.20200201
    [5] 张悦, 吕伟涛, 陈绿文, 等. 基于人工引雷的粤港澳闪电定位系统性能评估. 应用气象学报, 2022, 33(3): 329-340. doi:  10.11898/1001-7313.20220307

    Zhang Y, Lü W T, Chen L W, et al. Evaluation of GHMLLS performance characteristics based on observations of artificially triggered lightning. J Appl Meteor Sci, 2022, 33(3): 329-340. doi:  10.11898/1001-7313.20220307
    [6] Warner T A. Upward Leader Development from Tall Towers in Response to Downward Stepped Leaders//30th International Conference on Lightning Protection(ICLP). IEEE, 2010: 1-4.
    [7] Lu W T, Chen L W, Zhang Y, et al. Characteristics of unconnected upward leaders initiated from tall structures observed in Guangzhou. J Geophys Res, 2012, 117(D19). DOI:  10.1029/2012JD018035.
    [8] Gao Y, Lu W T, Ma Y, et al. Three-dimensional propagation characteristics of the upward connecting leaders in six negative tall-object flashes in Guangzhou. Atmos Res, 2014, 149: 193-203. doi:  10.1016/j.atmosres.2014.06.008
    [9] Saba M M F, Schumann C, Warner T A, et al. Upward lightning flashes characteristics from high-speed videos. J Geophys Res Atmos, 2016, 121(14): 8493-8505. doi:  10.1002/2016JD025137
    [10] Qi Q, Lu W T, Ma Y, et al. High-speed video observations of the fine structure of a natural negative stepped leader at close distance. Atmos Res, 2016, 178/179: 260-267. doi:  10.1016/j.atmosres.2016.03.027
    [11] 高攀亮, 史东东, 吴亭, 等. 反极性云闪的初始击穿特征. 应用气象学报, 2023, 34(3): 324-335. doi:  10.11898/1001-7313.20230306

    Gao P L, Shi D D, Wu T, et al. Characteristics of the preliminary breakdown in inverted-polarity intracloud lightning flashes. J Appl Meteor Sci, 2023, 34(3): 324-335. doi:  10.11898/1001-7313.20230306
    [12] 闫琳城, 张文娟, 张义军, 等. 南海雷暴大风时空分布及闪电和对流活动特征. 应用气象学报, 2023, 34(4): 503-512. doi:  10.11898/1001-7313.20230410

    Yan L C, Zhang W J, Zhang Y J, et al. Temporal and spatial distribution of thunderstorms and strong winds with characteristics of lightning and convective activities in the South China Sea. J Appl Meteor Sci, 2023, 34(4): 503-512. doi:  10.11898/1001-7313.20230410
    [13] 关雨侬, 吕伟涛, 齐奇, 等. 一次上行闪电中先导二维和三维发展特征的差异. 应用气象学报, 2023, 34(5): 598-607. doi:  10.11898/1001-7313.20230508

    Guan Y N, Lü W T, Qi Q, et al. Difference between 2D and 3D development characteristics of an upward lightning leader. J Appl Meteor Sci, 2023, 34(5): 598-607. doi:  10.11898/1001-7313.20230508
    [14] Arevalo L, Cooray V. Influence of Multiple Upward Connecting Leaders Initiated from the Same Structure on the Lightning Attachment Process. X International Symposium on Lightning Protection-SIPDA, 2009.
    [15] Cooray V, Fernando M, Arevalo L, et al. Interaction of Multiple Connecting Leaders Issued from a Grounded Structure Simulated Using a Self Consistent Leader Inception and Propagation Model(SLIM)//30th International Conference on Lightning Protection(ICLP). IEEE, 2010: 1-5.
    [16] Lalande P, Mazur V. A physical model of branching in upward leaders. Aerospace Lab, 2012, 5: 1-7. doi:  10.4271/2012-01-1509
    [17] Bazelyan E M, Raizer Y P, Aleksandrov N L, et al. Corona processes and lightning attachment: The effect of wind during thunderstorms. Atmos Res, 2009, 94(3): 436-447. doi:  10.1016/j.atmosres.2009.07.002
    [18] 任晓毓, 张义军, 吕伟涛, 等. 雷击建筑物的先导连接过程模拟. 应用气象学报, 2010, 21(4): 450-457. doi:  10.3969/j.issn.1001-7313.2010.04.008

    Ren X Y, Zhang Y J, Lü W T, et al. Simulation of lightning leaders and connection process with structures. J Appl Meteor Sci, 2010, 21(4): 450-457. doi:  10.3969/j.issn.1001-7313.2010.04.008
    [19] 任晓毓, 张义军, 吕伟涛, 等. 闪电先导随机模式的建立与应用. 应用气象学报, 2011, 22(2): 194-202. doi:  10.3969/j.issn.1001-7313.2011.02.008

    Ren X Y, Zhang Y J, Lü W T, et al. Establishment and application of random lightning leader model. J Appl Meteor Sci, 2011, 22(2): 194-202. doi:  10.3969/j.issn.1001-7313.2011.02.008
    [20] 谭涌波, 张冬冬, 周博文等. 地闪近地面形态特征的数值模拟. 应用气象学报, 2015, 26(2): 211-220. doi:  10.11898/1001-7313.20150209

    Tan Y B, Zhang D D, Zhou B W, et al. A numerical study on characteristics of cloud-to-ground lightning near surface configuration. J Appl Meteor Sci, 2015, 26(2): 211-220. doi:  10.11898/1001-7313.20150209
    [21] 余骏皓, 谭涌波, 郑天雪, 等. 建筑物群中多上行先导三维模型的建立. 应用气象学报, 2020, 31(6): 740-748. doi:  10.11898/1001-7313.20200609

    Yu J H, Tan Y B, Zheng T X, et al. A three-dimensional model establishment of multiple connecting leaders initiated from tall structures. J Appl Meteor Sci, 2020, 31(6): 740-748. doi:  10.11898/1001-7313.20200609
    [22] 廖义慧, 吕伟涛, 齐奇, 等. 基于闪电先导随机模式对不同连接形态的模拟. 应用气象学报, 2016, 27(3): 361-369. doi:  10.11898/1001-7313.20160311

    Liao Y H, Lü W T, Qi Q, et al. Simulation of various connecting patterns during the lightning connection process based on the stochastic lightning leader model. J Appl Meteor Sci, 2016, 27(3): 361-369. doi:  10.11898/1001-7313.20160311
    [23] 吴姗姗. 广州塔及其附近下行地闪的特征分析和模拟. 北京: 中国气象科学研究院, 2019.

    Wu S S. Characteristic Analysis and Simulation of Downward Cloud-to-ground Lightning Flashes Around the Canton Tower. Beijing: Chinese Academy of Meteorological Sciences, 2019.
    [24] Jiang R, Lyu W, Wu B, et al. Simulation of cloud-to-ground lightning strikes to structures based on an improved stochastic lightning model. J Atmos Sol-Terr Phys, 2020. DOI:  10.1016/j.jastp.2020.105274.
    [25] 谭涌波, 张鑫, 向春燕, 等. 建筑物上侧击雷电的三维数值模拟. 应用气象学报, 2017, 28(2): 227-236. doi:  10.11898/1001-7313.20170210

    Tan Y B, Zhang X, Xiang C Y, et al. Three-dimensional numerical simulation of side flash on buildings. J Appl Meteor Sci, 2017, 28(2): 227-236. doi:  10.11898/1001-7313.20170210
    [26] 雷艺楠, 谭涌波, 余骏皓, 等. 高矮建筑物多上行先导连接过程的数值模拟. 应用气象学报, 2022, 33(1): 80-91. doi:  10.11898/1001-7313.20220107

    Lei Y N, Tan Y B, Yu J H, et al. Numerical simulation on multiple upward leader attachment process of tall and low buildings. J Appl Meteor Sci, 2022, 33(1): 80-91. doi:  10.11898/1001-7313.20220107
    [27] 林雨荷, 谭涌波, 余骏皓, 等. 地闪三维随机模型的改进及多上行先导的数值模拟研究. 气象学报, 2022, 80(6): 999-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202206011.htm

    Lin Y H, Tan Y B, Yu J H, et al. Improvement of three-dimensional stochastic model of ground lightning and numerical simulation of multiple uplink pilots. Acta Meteor Sinica, 2022, 80(6): 999-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202206011.htm
    [28] Becerra M, Cooray V. On the velocity of positive connecting leaders associated with negative downward lightning leaders. Geophys Res Lett, 2008, 35(2): 196-199.
    [29] 齐奇, 吕伟涛, 武斌, 等. 广州两座高建筑物上闪击距离的二维光学观测. 应用气象学报, 2020, 31(2): 156-164. doi:  10.11898/1001-7313.20200203

    Qi Q, Lü W T, Wu B, et al. Two-dimensional optical observation of striking distance of lightning flashes to two buildings in Guangzhou. J Appl Meteor Sci, 2020, 31(2): 156-164. doi:  10.11898/1001-7313.20200203
    [30] Biagi C J, Uman M A, Gopalakrishnan J, et al. Determination of the electric field intensity and space charge density versus height prior to triggered lightning. J Geophys Res, 2011, 116(D15). DOI:  10.1029/2011JD015710.
    [31] Qi Q, Lyu W, Wang D, et al. Two-dimensional striking distance of lightning flashes to a cluster of tall buildings in Guangzhou. J Geophys Res Atmos, 2021, 126(22). DOI:  10.1029/2021JD034613.
    [32] Eriksson A J. The incidence of lightning strikes to power lines. IEEE Trans Power Deliv, 1987, 2(3): 859-870. doi:  10.1109/TPWRD.1987.4308191
    [33] Dellera L, Garbagnati E. Lightning stroke simulation by means of the leader progression model. Ⅰ. Description of the model and evaluation of exposure of free-standing structures. IEEE Trans Power Deliv, 1990, 5(4): 2009-2022. doi:  10.1109/61.103696
    [34] Rizk F A M. Modeling of lightning incidence to tall structures. Ⅱ. Application. IEEE Trans Power Deliv, 1994, 9(1): 172-193. doi:  10.1109/61.277690
    [35] Ait-Amar S, Berger G. Lightning Interception on Elevated Building//Proc of 5th WSEAS Int Conf on Power Systems & EMC, 2005: 17-23.
    [36] 高彦. 闪电连接过程中先导三维发展特征的分析. 北京: 中国气象科学研究院, 2014.

    Gao Y. The Three-dimensional Propagation Characteristics of Flash Leaders in the Attachment Process. Beijing: Chinese Academy of Meteorological Sciences, 2014.
    [37] 周定, 韩建强, 杨汉伦, 等. 广州塔结构设计. 建筑结构, 2012, 42(6): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201206002.htm

    Zhou D, Han J Q, Yang H L, et al. Structural design of Guangzhou Tower. Build Struct, 2012, 42(6): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201206002.htm
    [38] Guo X F, Zhang Q L. Effects of geometrical parameters of two height-unequal adjacent objects on corona discharges from their tips during a thunderstorm. Atmos Res, 2017, 190(6): 113-120.
  • 加载中
图(3) / 表(2)
计量
  • 摘要浏览量:  59
  • HTML全文浏览量:  9
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-29
  • 修回日期:  2024-01-25
  • 刊出日期:  2024-03-31

目录

    /

    返回文章
    返回