留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陆面网格尺度变换时植被类型处理方法的探讨

张正秋 孙菽芬

张正秋, 孙菽芬. 陆面网格尺度变换时植被类型处理方法的探讨. 应用气象学报, 2008, 19(2): 129-136..
引用本文: 张正秋, 孙菽芬. 陆面网格尺度变换时植被类型处理方法的探讨. 应用气象学报, 2008, 19(2): 129-136.
Zhang Zhengqiu, Sun Shufen. Impacts from the processing of vegetation types within a model grid cell. J Appl Meteor Sci, 2008, 19(2): 129-136.
Citation: Zhang Zhengqiu, Sun Shufen. Impacts from the processing of vegetation types within a model grid cell. J Appl Meteor Sci, 2008, 19(2): 129-136.

陆面网格尺度变换时植被类型处理方法的探讨

资助项目: 

“十一五”国家科技支撑计划项目 2006BAC02B00

中国科学院重点项目 KZCX3-SW-229

国家自然科学基金项目 40575043

国家自然科学基金项目 40233034

Impacts from the Processing of Vegetation Types Within a Model Grid Cell

  • 摘要: 针对陆面模式与大气模式耦合, 对比分析了模式网格点上多种植被并存和单一植被两种情况下的计算结果, 同时给出了网格元上地表有效温度、地表有效感热和潜热通量等的计算方案。试验使用SSiB陆面模式并以HAPEX-MOBILHY资料作为气象强迫场。试验结果表明:如果将网格元上多种植被类型归类成同一种植被类型, 模式对有效地表温度、感热和潜热通量等的计算结果与考虑多种植被类型的结果有很大差异。根据实际情况, HAPEX-MOBILHY试验区40%为森林, 60%为混合农业区, 如果根据一般的植被类型归类法, 将该试验区全部看作草地, 其积分结果与将该试验区看作40%为落叶针叶林和60%为草地的积分结果也存在一定的差别; 虽然有些植被类型在网格元上所占的覆盖面积较小, 但它却对网格元上地表通量的计算有较大的贡献。该研究对今后陆面模式耦合工作有一定的指导意义。
  • 图  1  植被组合类型的地表有效温度积分结果 (T表示植被类型)

    (a) 类型组1, (b) 类型组2, (c) 类型组3, (d) 类型组4

    Fig. 1  Calculated effective temperatures at land surface for different grouped vegetation types (T denotes vegetation type)

    (a) Group 1, (b) Group 2, (c) Group 3, (d) Group 4

    图  2  图 1, 但为地表感热通量

    Fig. 2  Same as in Fig.1, but for land surface sensible heat flux

    图  3  图 1, 但为地表潜热通量

    Fig. 3  Same as in Fig.1, but for land surface latent heat flux

    图  4  组合类型的积分结果 (a) 地表感热通量, (b) 地表潜热通量

    Fig. 4  Calculated results for grouped vegetation types (a) sensible heat flux, (b) latent heat flux

  • [1] 孙菽芬, 金继明.陆面过程模式研究中的几个问题.应用气象学报, 1997, 8(增刊):50-57. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX7S1.007.htm
    [2] 张正秋, 周秀骥, 李维亮, 等.一些陆面要素非均匀分布对模式计算结果影响的理论分析.应用气象学报, 2005, 16 (5):561-568. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050572&flag=1
    [3] Shao Y, Sogalla M, Kerschgens M, et al. Effects of land-surface heterogeneity upon surface fluxes and turbulent conditions. Meteorology and Atmospheric Physics, 2001, 78:157-181. https://www.researchgate.net/publication/227169818_Effects_of_land-surface_heterogeneity_upon_surface_fluxes_and_turbulent_conditions
    [4] Avissar R, Pielke R A. A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon Wea Rev, 1989, 117(10):2113-2136. https://www.researchgate.net/publication/249620268_A_Parameterization_of_Heterogeneous_Land_Surfaces_for_Atmospheric_Numerical_Models_and_Its_Impact_on_Regional_Meteorology
    [5] Hu Zhenglin, Islam Shafiqul, Jiang Le. Approaches for aggregating heterogeneous surface parameters and fluxes for mesoscale and climate models. Boundary-Layer Meteorology, 1999, 93 (2):313-336. doi:  10.1023/A:1002067506887
    [6] Koster R D. A comparative analysis of two land surface heterogeneity representations. J Climate, 1992, 5(12):1379-1390. doi:   10.1175/1520-0442(1992)005<1379:ACAOTL>2.0.CO;2
    [7] Seth A F, Giorgi F, Dickinson R E. Simulating flux from heterogeneous land surface:Explicit sub-grid method employing the Biosphere-Atmosphere Transfer Scheme (BATS). J Geophys Rev, 1994, 99(D9):18651-18667. doi:  10.1029/94JD01330/full
    [8] Leung R L, Ghan S J. A subgrid parameterization of orographic precipitation. Theor Appl Climatol, 1995, 52:95-118. doi:  10.1007/BF00865510
    [9] 钟中, 苏炳凯, 赵鸣.大气模式中有效粗糙度计算的一种新方法.自然科学进展, 2002, 12(5):519-523. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200205017.htm
    [10] Pitman A J, Yang Z L, Cogley J G, et al. Description of Bare Essential of Surface Transfer for the Bureau of Meteorology Research Centre. AGCM. BMRC Research Report, No.32, 1992.
    [11] Xue Y, Zeng F J, Schlosser C A. SSIB and its sensitivity to soil properties-a case study using HAPEX-MOBILHY data. Global & Planetary Change, 1996, 13:183-194. https://www.researchgate.net/publication/222501964_SSiB_and_its_sensitivity_to_soil_properties_-_A_case_study_using_HAPEX-Mobilhy_data
    [12] Pitman A, Desborough C. Brief description of bare essentials of surface transfer and results from simulations with the HAPEXM OBILHY data. Elsevier, 1996, 135-143. http://www.sciencedirect.com/science/article/pii/0921818195000429
    [13] Reed B C, Loveland T R, Steyaert L T, et al. Designing Global Land Cover Databases to Maximize Utility ∥Michener W K, Brunt J W, Stafford S G. Environmental Information Management and Analysis:Ecosystem to Global Scales. Francis and Taylor, 1994:299-314.
    [14] Pan Y, Li X, Gong P, et al. An integrative classification of vegetation in China based on NOAA AVHRR and vegetation climate indices of the Holdridge life zone. Int J Remote Sensing, 2003, 24(5):1009-1027. doi:  10.1080/01431160110115816
    [15] Xue Y, Zeng F J, Mitchell K, et al. The impact of land surface processes on the simulation of the US hydrological cycle:A case study of 1993 US flood using the Eta/SSiB regional model. Mon Wea Rev, 2001, 129:2833-2860. doi:  10.1175/1520-0493(2001)129<2833:TIOLSP>2.0.CO;2
    [16] Xue Y, Sellers P J, Kinter J L, et al. A simplified biosphere model for global climate studies. J Climate, 1991, 4:345-365. https://www.researchgate.net/publication/23833274_A_Simplified_Biosphere_Model_for_Global_Climate_Studies
  • 加载中
图(4)
计量
  • 摘要浏览量:  3163
  • HTML全文浏览量:  646
  • PDF下载量:  1645
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-02-09
  • 修回日期:  2007-08-07
  • 刊出日期:  2008-04-30

目录

    /

    返回文章
    返回