留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数值预报中气象卫星资料同化前处理技术进展

马刚 黄静 巩欣亚 希爽 薛蕾 李娟 张鹏 龚建东

马刚, 黄静, 巩欣亚, 等. 数值预报中气象卫星资料同化前处理技术进展. 应用气象学报, 2024, 35(2): 142-155. DOI:  10.11898/1001-7313.20240202..
引用本文: 马刚, 黄静, 巩欣亚, 等. 数值预报中气象卫星资料同化前处理技术进展. 应用气象学报, 2024, 35(2): 142-155. DOI:  10.11898/1001-7313.20240202.
Ma Gang, Huang Jing, Gong Xinya, et al. Review of pre-processing techniques for meteorological satellite data assimilation in numerical prediction. J Appl Meteor Sci, 2024, 35(2): 142-155. DOI:  10.11898/1001-7313.20240202.
Citation: Ma Gang, Huang Jing, Gong Xinya, et al. Review of pre-processing techniques for meteorological satellite data assimilation in numerical prediction. J Appl Meteor Sci, 2024, 35(2): 142-155. DOI:  10.11898/1001-7313.20240202.

数值预报中气象卫星资料同化前处理技术进展

DOI: 10.11898/1001-7313.20240202
资助项目: 

国家重点研发计划 2022YFC3004002

详细信息
    通信作者:

    马刚,邮箱: magang@cma.gov.cn

Review of Pre-processing Techniques for Meteorological Satellite Data Assimilation in Numerical Prediction

  • 摘要: 在数值天气预报变分同化中, 利用同化前处理将卫星资料完成有效信息优选、资料拼接和稀疏化、初级通道选择、下边界参数耦合等处理, 实现卫星资料同化对数值天气预报业务的正贡献, 是决定海量卫星资料同化效率、质量和效果的重要环节。针对多种格式的卫星资料, 中国气象局研发标准格式的高时效卫星资料拼接等技术, 有效减小整轨卫星资料时间滞后对数值天气预报业务的负面影响。对于风云气象卫星资料, 将云和降水检测、资料质量分析等处理置于同化前处理中, 实现多光谱资料融合的同化预质量控制, 保证了风云卫星微波温度探测资料和红外高光谱资料的同化正贡献。利用统一资料格式对预处理卫星资料进行再处理, 拓展针对卫星成像和主动探测资料的处理, 将卫星资料同化的部分质量控制功能置于卫星资料同化前处理中, 是风云卫星资料同化前处理技术发展的重要趋势。
  • 图  1  2023年12月14日12:00 CMA-GFS在6 h时间窗内应该同化的NOAA-19 AMSUA通道1的资料覆盖(a)和实际同化的卫星资料覆盖(b)

    Fig. 1  Measurements to Channel 1 of NOAA-19 AMSUA supposed to be assimilated(a) and multi-satellites measurements actually assimilated(b) within 6-hour assimilation time window at 1200 UTC 14 Dec 2023

    图  2  2023年12月17日06:00对应6 h同化时间窗内佳木斯、广州和乌鲁木齐3个HRPT站接力拼接的SNPP ATMS通道1的观测亮温覆盖

    Fig. 2  Relay stitched mosaic brightness temperature measurements to Channel 1 of SNPP ATMS from HRPT stations of Jiamusi, Guangzhou and Urumqi within 6-hour assimilation time window at 0600 UTC 17 Dec 2023

    图  3  2023年12月17日06:00对应6 h同化时间窗内NOAA-18、NOAA-19、METOP-A、METOP-C AMSUA和NOAA-20 ATMS通道1的观测亮温覆盖

    Fig. 3  Relay stitched mosaic brightness temperature measurements to Channel 1 of AMSUA of NOAA-18, NOAA-19,METOP-A, METOP-C and ATMS of NOAA-20 global multi-satellite orbital measurements within 6-hour assimilation time window at 0600 UTC 17 Dec 2023

    表  1  2019年中国气象局获取的ATOVS轨道和HRPT观测资料

    Table  1  ATOVS orbital and HRPT measurements obtained in CMA in 2009

    来源 覆盖范围 滞后时效/h 卫星 搭载仪器 资料类型 起始获取年份
    NESDIS(GTS) 全球 3~9 NOAA15-19、AQUA AMSU、MHS、AIRS L1B 2004
    EUMETSAT(GTS) 全球 3~7 NOAA15-17 AMSU、MHS、HIRS L1B 2007
    EUMETSAT(GTS) 全球 3~7 NOAA15-21、SNPP、METOP2-A-C AMSU、MHS、HIRS、CrIS、ATMS、IASI L1C 2009
    EUMETCAST (卫星转发) 全球 3~7 NOAA15-21、SNPP、METOP A-C、AQUA AMSU、MHS、IASI、CrIS、ATMS、AIRS L1C 2009
    EUMETCAST (卫星转发) 北半球 1~2 NOAA15-21、SNPP、METOP A/B/C、AQUA AMSU、MHS、IASI、CrIS、ATMS、AIRS L1C 2007
    RARS (GTS的HRPT站) 全球大部分地区 1.5 NOAA15-21、SNPP、METOP A-C、AQUA AMSU、MHS、IASI、CrIS、ATMS、AIRS L1C 2005
    DBnet(GTS的50多个HRPT站) 全球 1~2 NOAA15-21、SNPP、METOP A-C、AQUA AMSU、MHS、IASI、CrIS、ATMS、AIRS L1C 2016
    NSMC 东亚 0.5 NOAA15-19、SNPP、AQUA AMSU、MHS、ATMS 源包 1999
    下载: 导出CSV
  • [1] English S J, Renshaw R J, Dibben P C, et al.A comparison of the impact of TOVS arid ATOVS satellite sounding data on the accuracy of numerical weather forecasts.Q J R Meteor Soc, 2000, 126(569):2911-2931.
    [2] Eyre J R, Bell W, Cotton J, et al. Assimilation of satellite data in numerical weather prediction. Part Ⅱ: Recent years. Q J R Meteor Soc, 2022, 148(743): 521-556. doi:  10.1002/qj.4228
    [3] Kaplan L D. Inference of atmospheric structure from remote radiation measurements. J Opt Soc Amer, 1959, 49(10): 1004-1007. doi:  10.1364/JOSA.49.001004
    [4] McMillin L M, Dean C. Evaluation of a new operational technique for producing clear radiances. J Appl Meteor, 1982, 21(7): 1005-1014. doi:  10.1175/1520-0450(1982)021<1005:EOANOT>2.0.CO;2
    [5] Stogryn A. Estimates of brightness temperatures from scanning radiometer data. IEEE Trans Anntenas Propag, 1978, 26(5): 720-726. doi:  10.1109/TAP.1978.1141919
    [6] Andersson E, Pailleux J, Thepaut J N, et al. Use of cloud-cleared radiances in three/four-dimensional variational data assimilation. Q J R Meteor Soc, 1994, 120(517): 627-653.
    [7] McNally A P, Vesperini M. Variational analysis of humidity information from TOVS radiances. Q J R Meteor Soc, 1996, 122(535): 1521-1544. doi:  10.1002/qj.49712253504
    [8] 周雪松, 郭启云, 夏元彩, 等. 基于往返式平漂探空的FY-3D卫星反演温度检验. 应用气象学报, 2023, 34(1): 52-64. doi:  10.11898/1001-7313.20230105

    Zhou X S, Guo Q Y, Xia Y C, et al. Inspection of FY-3D satellite temperature data based on horizontal drift round-trip sounding data. J Appl Meteor Sci, 2023, 34(1): 52-64. doi:  10.11898/1001-7313.20230105
    [9] Ohring G. Impact of satellite temperature sounding data on wea- ther forecasts. Bull Amer Meteor Soc, 1979, 60(10): 1142-1147. doi:  10.1175/1520-0477(1979)060<1142:IOSTSD>2.0.CO;2
    [10] Lorenc A C. Analysis methods for numerical weather prediction. Q J R Meteor Soc, 1986, 112(474): 1177-1194. doi:  10.1002/qj.49711247414
    [11] Talagrand O, Courtier P. Variational assimilation of meteorological observations with the adjoint vorticity equation. Ⅰ: Theory. Q J R Meteor Soc, 1987, 113(478): 1311-1328. doi:  10.1002/qj.49711347812
    [12] Eyre J. A Fast Radiative Transfer Model for Satellite Sounding Systems. ECMWF Technical Memorandum, 176, 1991.
    [13] McMillin L M, Crone L J, Goldberg M D, et al. Atmospheric transmittance of an absorbing gas. 4. OPTRAN: A computationally fast and accurate transmittance model for absorbing gases with fixed and with variable mixing ratios at variable viewing angles. Appl Opt, 1995, 34(27): 6269-6274. doi:  10.1364/AO.34.006269
    [14] Eyre J R, Kelly G A, McNally A P, et al. Assimilation of TOVS radiance information through one-dimensional variational analysis. Q J R Meteor Soc, 1993, 119(514): 1427-1463.
    [15] Derber J C, Wu W S. The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon Wea Rev, 1998, 126(8): 2287-2299. doi:  10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2
    [16] McNally A, Andersson E, Kelly G, et al. The Use of Raw TOVS/ATOVS Radiances in the ECMWF 4D-var Assimilation System//Technical Proceedings of the 10th International TOVS Study Conference, 1999: 377-384.
    [17] 王金成, 陆慧娟, 韩威, 等. GRAPES全球三维变分同化业务系统性能. 应用气象学报, 2017, 28(1): 11-24. doi:  10.11898/1001-7313.20170102

    Wang J C, Lu H J, Han W, et al. Improvements and performances of the operational GRAPES_GFS 3Dvar system. J Appl Meteor Sci, 2017, 28(1): 11-24. doi:  10.11898/1001-7313.20170102
    [18] Zhang L, Liu Y Z, Liu Y, et al. The operational global four-dimensional variational data assimilation system at the China Meteorological Administration. Q J R Meteor Soc, 2019, 145(722): 1882-1896. doi:  10.1002/qj.3533
    [19] Lorenc A C. A global three-dimensional multivariate statistical interpolation scheme. Mon Wea Rev, 1981, 109(4): 701-721. doi:  10.1175/1520-0493(1981)109<0701:AGTDMS>2.0.CO;2
    [20] Smith W L, Woolf H M. The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations. J Atmos Sci, 1976, 33(7): 1127-1140. doi:  10.1175/1520-0469(1976)033<1127:TUOEOS>2.0.CO;2
    [21] Saunders R, Matricardi M, Brunel P. An improved fast radiative transfer model for assimilation of satellite radiance observations. Q J R Meteor Soc, 1999, 125(556): 1407-1425. doi:  10.1002/qj.1999.49712555615
    [22] McNally A P, Derber J C, Wu W, et al. The use of TOVS level-1b radiances in the NCEP SSI analysis system. Q J R Meteor Soc, 2000, 126(563): 689-724.
    [23] 李喆, 陈炯, 马占山, 等. CMA-GFS云预报的偏差分布特征. 应用气象学报, 2022, 33(5): 527-540. doi:  10.11898/1001-7313.20220502

    Li Z, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi:  10.11898/1001-7313.20220502
    [24] English S, Renshaw R, Dibben P, et al. The AAPP Module for Identifying Precipitation, Ice Cloud, Liquid Water and Surface Types on the AMSU-A grid//Technical Proceedings of the 9th International TOVS Study Conference, 1997: 119-130.
    [25] Saunders R, Andersson E, Kelly G, et al. Developments in Assimilating Global TOVS Data at the UK Met Office//Technical Proceedings of the 9th International TOVS Study Conference, 1997: 417-428.
    [26] English S J, Eyre J R, Smith J A. A cloud-detection scheme for use with satellite sounding radiances in the context of data assimilation for numerical weather prediction. Q J R Meteor Soc, 1999, 125(559): 2359-2378.
    [27] 董超华, 张凤英, 郑波, 等. 卫星区域大气探测业务处理系统. 应用气象学报, 1991, 2(1): 22-31. http://qikan.camscma.cn/article/id/19910103

    Dong C H, Zhang F Y, Zheng B, et al. A regional satellite atmosphere sounding data operational processing system. J Appl Meteor Sci, 1991, 2(1): 22-31. http://qikan.camscma.cn/article/id/19910103
    [28] 钱建梅, 郑旭东. 国家卫星气象中心气象卫星资料存档系统. 应用气象学报, 2003, 14(6): 756-762. doi:  10.3969/j.issn.1001-7313.2003.06.015

    Qian J M, Zheng X D. The satellite data archive system of National Satellite Meteorological Center. J Appl Meteor Sci, 2003, 14(6): 756-762. doi:  10.3969/j.issn.1001-7313.2003.06.015
    [29] Geer A J, Baordo F, Bormann N, et al. The growing impact of satellite observations sensitive to humidity, cloud and precipitation. Q J R Meteor Soc, 2017, 143(709): 3189-3206. doi:  10.1002/qj.3172
    [30] Menzel W P, Schmit T J, Zhang P, et al. Satellite-based atmospheric infrared sounder development and applications. Bull Amer Meteor Soc, 2018, 99(3): 583-603. doi:  10.1175/BAMS-D-16-0293.1
    [31] Noh Y, Sohn B, Kim Y, et al. A new infrared atmospheric sounding interferometer channel selection and assessment of its impact on Met Office NWP Forecasts. Adv Atmos Sci, 2017, 34: 1265-1281. doi:  10.1007/s00376-017-6299-8
    [32] Rodgers C D. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev Geophys, 1976, 14(4): 609-624. doi:  10.1029/RG014i004p00609
    [33] Goldberg M D, Qu Y, McMillin L M, et al. AIRS near-real-time products and algorithms in support of operational numerical weather prediction. IEEE Trans Geosci Remote Sens, 2003, 41(2): 379-389. doi:  10.1109/TGRS.2002.808307
    [34] Zhang Q. Impacts on initial condition modification from hyperspectral infrared sounding data assimilation: Comparisons between full-spectrum and channel-selection scheme based on two-month experiments using CrIS and IASI observation. Inter J Geosci, 2021, 12(9): 763-783. doi:  10.4236/ijg.2021.129043
    [35] Chen Y, Han Y. Evaluation of Different Calibration Approaches for S-NPP CRIS Full Spectral Resolution SDR Processing//IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2015: 2127-2130.
    [36] Collard A D. Selection of IASI channels for use in numerical weather prediction. Q J R Meteor Soc, 2007, 133(629): 1977-1991. doi:  10.1002/qj.178
    [37] Smith J, Gambacorta A, Barnet C, et al. The NPP and J1 CrIS Operational High-Resolution Channel Selection for the NUCAPS algorithm: A Demonstration of Global Applicability to Meet Users Needs//AGU Fall Meeting, 2016.
    [38] 马刚, 郭杨, 苏婧, 等. 卫星探测通道晴空大气吸收透过率快速计算研究进展. 地球物理学报, 2023, 66(6): 2275-2291. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202306005.htm

    Ma G, Guo Y, Su J, et al. An overview of fast calculation to clear atmospheric absorption transmittance of satellite channel. Chinese J Geophys, 2023, 66(6): 2275-2291. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202306005.htm
    [39] Pavelin E G, Candy B. Assimilation of surface-sensitive infrared radiances over land: Estimation of land surface temperature and emissivity. Q J R Meteor Soc, 2014, 140(681): 1198-1208. doi:  10.1002/qj.2218
    [40] Duan S B, Han X J, Huang C, et al. Land surface temperature retrieval from passive microwave satellite observations: State-of-the-art and future directions. Remote Sens, 2020, 12(16). DOI: 10.3390/rs12162573.
    [41] Prigent C, Aires F, Wang D, et al. Sea-surface emissivity parametrization from microwaves to millimetre waves. Q J R Meteor Soc, 2017, 143(702): 596-605. doi:  10.1002/qj.2953
    [42] Karbou F, Prigent C, Eymard L, et al. Microwave land emissivity calculations using AMSU measurements. IEEE Trans Geosci Remote Sens, 2005, 43(5): 948-959. doi:  10.1109/TGRS.2004.837503
    [43] Xiao H Y, Li J, Liu G Q, et al. Assimilation of AMSU-A surface-sensitive channels in CMA-GFS 4D-var system over land. Wea Forecasting, 2023, 38(9): 1777-1790. doi:  10.1175/WAF-D-23-0032.1
    [44] Noh Y C, Lim A H N, Huang H L, et al. Global forecast impact of low data latency infrared and microwave sounders observations from polar orbiting satellites. Remote Sens, 2020, 12(14). DOI: 10.3390/rs12142193.
    [45] Diaz S W, CIMAS, Miami F L, et al. Impact of Satellite Data Latency on Global Weather Forecasts. 100th American Meteorological Society, 2020.
    [46] Lin H D, Weygandt S S, Benjamin S G, et al. Satellite radiance data assimilation within the hourly updated rapid refresh. Wea Forecasting, 2017, 32(4): 1273-1287. doi:  10.1175/WAF-D-16-0215.1
    [47] Liou K N. An Introduction to Atmospheric Radiation. New York, 2002.
    [48] 沈学顺, 苏勇, 胡江林, 等. GRAPES_GFS全球中期预报系统的研发和业务化. 应用气象学报, 2017, 28(1): 1-10. doi:  10.11898/1001-7313.20170101

    Shen X S, Su Y, Hu J L, et al. Development and operation transformation of GRAPES global middle-range forecast system. J Appl Meteor Sci, 2017, 28(1): 1-10. doi:  10.11898/1001-7313.20170101
    [49] Liu Z Q, Jiang L P, Shi C X, et al. CRA-40/Atmosphere-The first-generation Chinese atmospheric reanalysis(1979-2018): System description and performance evaluation. J Meteor Res, 2023, 37(1): 1-19. doi:  10.1007/s13351-023-2086-x
    [50] 张进, 孙健, 沈学顺, 等. CMA-GFS V4.0模式关键技术研发和业务化. 应用气象学报, 2023, 34(5): 513-526. doi:  10.11898/1001-7313.20230501

    Zhang J, Sun J, Shen X S, et al. Key model technologies of CMA-GFS V4.0 and application to operational forecast. J Appl Meteor Sci, 2023, 34(5): 513-526. doi:  10.11898/1001-7313.20230501
    [51] Zhang P, Lu Q F, Hu X Q, et al. Latest progress of the Chinese meteorological satellite program and core data processing technologies. Adv Atmos Sci, 2019, 36(9): 1027-1045. doi:  10.1007/s00376-019-8215-x
    [52] 董佩明, 王海军, 韩威, 等. 水物质对云雨区卫星微波观测模拟影响. 应用气象学报, 2009, 20(6): 682-691. doi:  10.3969/j.issn.1001-7313.2009.06.005

    Dong P M, Wang H J, Han W, et al. The effect of water content on the simulation of satellite microwave observation in cloudy and rainy area. J Appl Meteor Sci, 2009, 20(6): 682-691. doi:  10.3969/j.issn.1001-7313.2009.06.005
    [53] 谷松岩, 王振占, 马刚, 等. 气象卫星微波大气遥感. 北京: 科学出版社, 2021.

    Gu S Y, Wang Z Z, Ma G. Meteorological Satellite Microwave Atmospheric Remote Sensing. Beijing: Science Press, 2021.
    [54] English S, McNally A, Bormann N, et al. Impact of satellite data. ECMWF Technical Memorandum 804, 2013.
    [55] Wang L K, Tremblay D, Zhang B, et al. Fast and accurate collocation of the visible infrared imaging radiometer suite measurements with cross-track infrared sounder. Remote Sens, 2016, 8(1). DOI: 10.3390/rs8010076.
    [56] Li J, Liu G Q. Direct assimilation of Chinese FY-3C microwave temperature sounder-2 radiances in the global GRAPES system. Atmos Meas Tech, 2016, 9(7): 3095-3113. doi:  10.5194/amt-9-3095-2016
    [57] Qin L Y, Chen Y D, Yu T L, et al. Dynamic channel selection of microwave temperature sounding channels under cloudy conditions. Remote Sens, 2020, 12(3). DOI: 10.3390/rs12030403.
    [58] Qin L Y, Chen Y D, Ma G, et al. Assimilation of FY-3D MWTS-Ⅱ radiance with 3D precipitation detection and the impacts on typhoon forecasts. Adv Atmos Sci, 2023, 40(5): 900-919. doi:  10.1007/s00376-022-1252-x
    [59] Kan W L, Dong P M, Weng F Z, et al. Impact of Fengyun-3E microwave temperature and humidity sounder data on CMA global medium range weather forecasts. Remote Sens, 2022, 14(19). DOI: 10.3390/rs14195014.
    [60] Ventress L, Dudhia A. Improving the selection of IASI channels for use in numerical weather prediction. Q J R Meteor Soc, 2014, 140(684): 2111-2118. doi:  10.1002/qj.2280
    [61] Yin R Y, Han W, Gao Z Q, et al. The evaluation of FY4A's Geostationary Interferometric Infrared Sounder(GIIRS) long-wave temperature sounding channels using the GRAPES global 4D-Var. Q J R Meteor Soc, 2020, 146(728): 1459-1476. doi:  10.1002/qj.3746
    [62] Yan X S, Chen Y D, Ma G, et al. A 3-D cloud detection method for FY-4A GIIRS and its application in operational numerical weather prediction system. IEEE Trans Geosci Remote Sens, 2023, 61: 1-13.
    [63] 王素娟, 崔鹏, 张鹏, 等. FY-3C/VIRR海表温度产品及质量检验. 应用气象学报, 2020, 31(6): 729-739. doi:  10.11898/1001-7313.20200608

    Wang S J, Cui P, Zhang P, et al. FY-3C/VIRR sea surface temperature products and quality validation. J Appl Meteor Sci, 2020, 31(6): 729-739. doi:  10.11898/1001-7313.20200608
    [64] 崔鹏, 王素娟, 陆风, 等. FY-4A/AGRI海表温度产品和质量检验. 应用气象学报, 2023, 34(3): 257-269. doi:  10.11898/1001-7313.20230301

    Cui P, Wang S J, Lu F, et al. FY-4A/AGRI sea surface temperature product and quality validation. J Appl Meteor Sci, 2023, 34(3): 257-269. doi:  10.11898/1001-7313.20230301
    [65] Xiao H Y, Han W, Wang H, et al. Impact of FY-3D MWRI radiance assimilation in GRAPES 4DVar on forecasts of Typhoon Shanshan. J Meteor Res, 2020, 34(4): 836-850. doi:  10.1007/s13351-020-9122-x
    [66] 郭杨, 陆其峰, 卢乃锰, 等. 多源遥测参数质量控制的FY-3C MWHTS观测亮温质量评分. 遥感学报, 2022, 26(11): 2147-2161. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202211003.htm

    Guo Y, Lu Q F, Lu N M, et al. FY-3C MWHTS observed brightness temperature quality score based on the multi-source telemetry parameter quality control. National Remote Sens Bull, 2022, 26(11): 2147-2161. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202211003.htm
    [67] Qi C L, Wu C Q, Hu X Q, et al. High spectral infrared atmospheric sounder(HIRAS): System overview and on-orbit performance assessment. IEEE Trans Geosci Remote Sens, 2020, 58(6): 4335-4352. doi:  10.1109/TGRS.2019.2963085
    [68] McNally C. Assimilation of Radiance Products from Geostationary Satellites: 1-year Report. EUMET/ECMWF Fellowship Programme Research Reports 21, 2011.
    [69] Burrows C. Assimilation of Radiance Observations from Geostationary Satellites: Third Year Report. EUMET/ECMWF Fellowship Programme Research Reports 52, 2020.
    [70] Li J, Geer A J, Okamoto K, et al. Satellite all-sky infrared radiance assimilation: Recent progress and future perspectives. Adv Atmos Sci, 2022, 39(1): 9-21. doi:  10.1007/s00376-021-1088-9
    [71] Lu Y H, Zhang F Q. A novel channel-synthesizing method for reducing uncertainties in satellite radiative transfer modeling. Geophys Res Lett, 2018, 45(10): 5115-5125. doi:  10.1029/2018GL077342
    [72] Yu T L, Ma G, Lu F, et al. Quality scoring of the Fengyun 4A clear sky radiance product. Remote Sens, 2021, 13(18). DOI: 10.3390/rs13183658.
    [73] 王春芳, 李湘, 陈永涛, 等. 中国气象局卫星广播系统(CMACast)设计. 应用气象学报, 2012, 23(1): 113-120. doi:  10.3969/j.issn.1001-7313.2012.01.013

    Wang C F, Li X, Chen Y T, et al. Design of CMA's broadcast system for meteorological data-CMACast. J Appl Meteor Sci, 2012, 23(1): 113-120. doi:  10.3969/j.issn.1001-7313.2012.01.013
    [74] 黄丽萍, 邓莲堂, 王瑞春, 等. CMA-MESO关键技术集成及应用. 应用气象学报, 2022, 33(6): 641-654. doi:  10.11898/1001-7313.20220601

    Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi:  10.11898/1001-7313.20220601
  • 加载中
图(3) / 表(1)
计量
  • 摘要浏览量:  161
  • HTML全文浏览量:  25
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-15
  • 修回日期:  2024-01-03
  • 刊出日期:  2024-03-31

目录

    /

    返回文章
    返回