留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2003—2022年东北地区气溶胶光学厚度变化特征

李婉 赵胡笳 王昌双 王鹏

李婉, 赵胡笳, 王昌双, 等. 2003—2022年东北地区气溶胶光学厚度变化特征. 应用气象学报, 2024, 35(2): 211-224. DOI:  10.11898/1001-7313.20240207..
引用本文: 李婉, 赵胡笳, 王昌双, 等. 2003—2022年东北地区气溶胶光学厚度变化特征. 应用气象学报, 2024, 35(2): 211-224. DOI:  10.11898/1001-7313.20240207.
Li Wan, Zhao Hujia, Wang Changshuang, et al. Variation characteristics of aerosol optical depth in Northeast China from 2003 to 2022. J Appl Meteor Sci, 2024, 35(2): 211-224. DOI:  10.11898/1001-7313.20240207.
Citation: Li Wan, Zhao Hujia, Wang Changshuang, et al. Variation characteristics of aerosol optical depth in Northeast China from 2003 to 2022. J Appl Meteor Sci, 2024, 35(2): 211-224. DOI:  10.11898/1001-7313.20240207.

2003—2022年东北地区气溶胶光学厚度变化特征

DOI: 10.11898/1001-7313.20240207
资助项目: 

国家自然科学基金面上项目 42175185

详细信息
    通信作者:

    赵胡笳, 邮箱: tjzhj4659@sina.com

Variation Characteristics of Aerosol Optical Depth in Northeast China from 2003 to 2022

  • 摘要: 利用2003—2022年我国东北地区MODIS(moderate-resolution imaging spectroradiometer)大气气溶胶光学厚度(aerosol optical depth, AOD)数据和中国多尺度排放清单模型(multi-resolution emission inventory for China, MEIC), 分析东北地区AOD的空间分布特征及年际变化趋势, 讨论气象因子和人为排放对东北地区AOD变化的影响。结果表明: 辽宁AOD较高, 最大值为0.6, 出现在辽宁中部, 其次是吉林西部, AOD平均值为0.4, 黑龙江AOD平均值为0.3。东北地区AOD高值区出现在春季和夏季, AOD空间分布在秋季呈减小趋势, 冬季分布范围增加。不同季节AOD最高值均出现在辽宁, 东北地区夏季AOD增加主要与环境湿度有关, 边界层气象条件对冬季AOD具有一定影响。辽宁AOD在[0.1, 0.2)和[0.2, 0.3)范围内年平均发生频率最高为50%, 吉林和黑龙江AOD在[0.1, 0.2)范围的年平均发生频率最高为25%~30%, 特别是黑龙江极端清洁状况AOD在[0.0, 0.1)范围内年平均发生频率最高为15%。东北地区AOD区域平均值在2003年和2014年较高, 主要受到边界层气象要素和人为排放SO2、PM2.5、有机碳和NO2影响。东北地区夏季AOD年代际变化趋势从2012年之前的增长趋势(0.1·(10 a)-1)向2013以后的减少趋势(-0.3·(10 a)-1)转变。
  • 图  1  2003年3月—2023年2月东北地区AOD、地形高度、人口数量和人为排放SO2分布

    Fig. 1  Distribution of AOD, topographic height, population size and anthropogenic SO2 emissions in Northeast China from Mar 2003 to Feb 2023

    图  2  2003年3月—2023年2月东北地区气溶胶光学厚度季节分布

    Fig. 2  Seasonal distribution of AOD in Northeast China from Mar 2003 to Feb 2023

    图  3  2003年3月—2023年2月东北地区气溶胶光学厚度区域平均值

    Fig. 3  Regional average of AOD in Northeast China from Mar 2003 to Feb 2023

    图  4  2003年3月—2023年2月东北地区不同季节边界层高度(填色) 及风场(矢量)

    Fig. 4  Seasonal distribution of boundary layer height (the shaded) and wind field (the vector) in Northeast China from Mar 2003 to Feb 2023

    图  5  2003年3月—2023年2月东北地区气溶胶光学厚度发生频率

    Fig. 5  Frequency occurrence of AOD in Northeast China from Mar 2003 to Feb 2023

    图  6  2003年3月—2023年2月东北地区气溶胶光学厚度年际变化

    Fig. 6  Interannual variation of AOD in Northeast China from Mar 2003 to Feb 2023

    图  7  2003—2020年东北地区平均风速、降水量和边界层高度年际变化

    Fig. 7  Interannual variation of wind speed, precipitation and boundary layer height in Northeast China from 2003 to 2020

    图  8  2003—2020年东北地区SO2、PM2.5、OC和氮氧化物年际变化

    Fig. 8  Interannual variation of SO2, PM2.5, OC and NOx in Northeast China from 2003 to 2020

    图  9  东北地区气溶胶光学厚度年代际变化趋势

    (·表示趋势值达到0.05显著性水平)

    Fig. 9  Interdecadal variation trend of AOD in Northeast China

    (· denotes the trend passing the test of 0.05 level)

    图  10  东北地区气溶胶光学厚度不同季节年代际变化趋势

    (·表示趋势值达到0.05显著性水平)

    Fig. 10  Interdecadal variation trend of AOD in different seasons in Northeast China

    (· denotes the trend passing the test of 0.05 level)

    表  1  2003—2020年东北地区AOD与气象因子和人为排放源相关分析

    Table  1  Correlation coefficient between AOD and meteorological and anthropogenic emissions in Northeast China from 2003 to 2020

    气象因子与人为排放源 辽宁 吉林 黑龙江
    边界层高度 -0.56* -0.42 -0.43
    平均风速 -0.52* -0.60* -0.46
    SO2 0.62* 0.25 0.10
    PM2.5 0.61* 0.34 0.25
    OC 0.60* 0.36 0.29
    NOx 0.17 0.23 0.25
    注:*表示达到0.05显著性水平。
    下载: 导出CSV
  • [1] Charlson R J, Schwartz S E, Hales J M, et al.Climate forcing by anthropogenic aerosols.Science, 1992, 255(5043):423-430. doi:  10.1126/science.255.5043.423
    [2] Watson J G. Visibility: Science and regulation. J Air Waste Manag Assoc, 2002, 52(6): 628-713. doi:  10.1080/10473289.2002.10470813
    [3] Hansen J, Sato M, Ruedy R. Radiative forcing and climate response. J Geophys Res, 1997, 102(D6): 6831-6864. doi:  10.1029/96JD03436
    [4] Ackerman A S, Toon O B, Stevens D E, et al. Reduction of tropical cloudiness by soot. Science, 2000, 288(5468): 1042-1047. doi:  10.1126/science.288.5468.1042
    [5] 李睿劼, 黄梦宇, 丁德平, 等. 基于70 m3膨胀云室的暖云滴谱试验研究. 应用气象学报, 2023, 34(5): 540-551. doi:  10.11898/1001-7313.20230503

    Li R J, Huang M Y, Ding D P, et al. Warm cloud size distribution experiment based on 70 m3 expansion cloud chamber. J Appl Meteor Sci, 2023, 34(5): 540-551. doi:  10.11898/1001-7313.20230503
    [6] Dubovik O, Holben B N, Eck T F, et al. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci, 2002, 59(3): 590-608. doi:  10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2
    [7] 吴啸天, 王晓妍, 郑栋, 等. 不同类型气溶胶对长三角地区地闪活动影响. 应用气象学报, 2023, 34(5): 608-618. doi:  10.11898/1001-7313.20230509

    Wu X T, Wang X Y, Zheng D, et al. Effects of different aerosols on cloud-to-ground lightning activity in the Yangtze River Delta. J Appl Meteor Sci, 2023, 34(5): 608-618. doi:  10.11898/1001-7313.20230509
    [8] Breéon F M, Tanreé D, Generoso S. Aerosol effect on cloud droplet size monitored from satellite. Science, 2002, 295(5556): 834-838. doi:  10.1126/science.1066434
    [9] Allen S, Plattner G, Nauels A, et al. Climate Change 2013: The physical science basis. An overview of the working group Ⅰ contribution to the fifth assessment report of the intergovernmental panel on climate change(IPCC). Computational Geometry, 2007, 18(2): 95-123.
    [10] Gui K, Che H Z, Zheng Y, et al. Three-dimensional climatology, trends, and meteorological drivers of global and regional tropospheric type-dependent aerosols: Insights from 13 years (2007-2019) of CALIOP observations. Atmos Chem Phys, 2021, 21(19): 15309-15336. doi:  10.5194/acp-21-15309-2021
    [11] Gui K, Che H Z, Li L, et al. The significant contribution of small-sized and spherical aerosol particles to the decreasing trend in total aerosol optical depth over land from 2003 to 2018. Engineering, 2022, 16: 82-92. doi:  10.1016/j.eng.2021.05.017
    [12] Holben B N, Eck T F, Slutsker I, et al. AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens Environ, 1998, 66(1): 1-16. doi:  10.1016/S0034-4257(98)00031-5
    [13] Goloub P, Li Z, Dubovik O, et al. PHOTONS/AERONET Sunphotometer Network Overview: Description, Activities, Results//Proc SPIE, Fourteenth International Symposium on Atmospheric and Ocean Optics/Atmospheric Physics, 2008, 6936: 218-232.
    [14] Bokoye A I, Royer A, O'Neil N T, et al. Characterization of atmospheric aerosols across Canada from a ground-based sunphotometer network: AEROCAN. Atmosphere-Ocean, 2001, 39(4): 429-456. doi:  10.1080/07055900.2001.9649687
    [15] Takamura T, Nakajima T. Overview of SKYNET and its activities. Optica Puray Aplicada, 2004, 37: 3303-3308.
    [16] 杨先逸, 车慧正, 陈权亮, 等. 天空辐射计观测反演北京城区气溶胶光学特性. 应用气象学报, 2020, 31(3): 373-384. doi:  10.11898/1001-7313.20200311

    Yang X Y, Che H Z, Chen Q L, et al. Retrieval of aerosol optical properties by skyradiometer over urban Beijing. J Appl Meteor Sci, 2020, 31(3): 373-384. doi:  10.11898/1001-7313.20200311
    [17] 梁苑新, 车慧正, 王宏, 等. 北京一次污染过程气溶胶光学特性及辐射效应. 应用气象学报, 2020, 31(5): 583-594. doi:  10.11898/1001-7313.20200506

    Liang Y X, Che H Z, Wang H, et al. Aerosol optical properties and radiative effects during a pollution episode in Beijing. J Appl Meteor Sci, 2020, 31(5): 583-594. doi:  10.11898/1001-7313.20200506
    [18] Levy R C, Mattoo S, Munchak L A, et al. The collection 6 MODIS aerosol products over land and ocean. Atmos Meas Technol, 2013, 6(11): 2989-3034. doi:  10.5194/amt-6-2989-2013
    [19] 高洋, 蔡淼, 曹治强, 等. "21·7"河南暴雨环境场及云的宏微观特征. 应用气象学报, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604

    Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604
    [20] 郭雪星, 瞿建华, 叶凌梦, 等. 基于朴素贝叶斯的FY-4A/AGRI云检测方法. 应用气象学报, 2023, 34(3): 282-294. doi:  10.11898/1001-7313.20230303

    Guo X X, Qu J H, Ye L M, et al. FY-4A/AGRI cloud detection method based on naive Bayesian algorithm. J Appl Meteor Sci, 2023, 34(3): 282-294. doi:  10.11898/1001-7313.20230303
    [21] 高玲, 张里阳, 李俊, 等. 利用AVHRR数据反演陆地气溶胶光学厚度. 应用气象学报, 2014, 25(1): 42-51. http://qikan.camscma.cn/article/id/20140105

    Gao L, Zhang L Y, Li J, et al. Retrieval of atmospheric aerosol optical depth over land from AVHRR. J Appl Meteor Sci, 2014, 25(1): 42-51. http://qikan.camscma.cn/article/id/20140105
    [22] Che H, Xia X, Zhu J, et al. Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements. Atmos Chem Phys, 2014, 14(4): 2125-2138. doi:  10.5194/acp-14-2125-2014
    [23] 郭蕾, 李谢辉, 刘雨亭. 城市化对川渝地区极端气候事件的影响. 应用气象学报, 2023, 34(5): 574-585. doi:  10.11898/1001-7313.20230506

    Guo L, Li X H, Liu Y T. Impacts of urbanization on extreme climate events in Sichuan-Chongqing Region. J Appl Meteor Sci, 2023, 34(5): 574-585. doi:  10.11898/1001-7313.20230506
    [24] Xia X G, Chen H B, Li Z Q, et al. Significant reduction of surface solar irradiance induced by aerosols in a suburban region in northeastern China. J Geophys Res, 2007, 112, D22S02. DOI:  10.1029/2006JD007562.
    [25] Xin J Y, Wang Y S, Li Z Q, et al. Aerosol optical depth(AOD) and Ångström exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005. J Geophys Res, 2007, 112, D05203. DOI:  10.1029/2006JD007075.
    [26] Che H Z, Zhang X Y, Chen H B, et al. Instrument calibration and aerosol optical depth validation of the China aerosol remote Sensing network. J Geophys Res, 2009, 114, D03206. DOI:  10.1029/2008JD011030.
    [27] 颜鹏, 刘桂清, 周秀骥, 等. 上甸子秋冬季雾霾期间气溶胶光学特性. 应用气象学报, 2010, 21(3): 257-265. http://qikan.camscma.cn/article/id/20100301

    Yan P, Liu G Q, Zhou X J, et al. Characteristics of aerosol optical properties during haze and fog episodes at Shangdianzi in Northern China. J Appl Meteor Sci, 2010, 21(3): 257-265. http://qikan.camscma.cn/article/id/20100301
    [28] Wang X, Liu J, Che H Z, et al. Spatial and temporal evolution of natural and anthropogenic dust events over Northern China. Sci Rep, 2018, 8(1): 2141. doi:  10.1038/s41598-018-20382-5
    [29] Liang Y X, Gui K, Zheng Y, et al. Impact of biomass burning in south and Southeast Asia on background aerosol in southwest China. Aerosol Air Qual Res, 2019, 19(5): 1188-1204. doi:  10.4209/aaqr.2018.08.0324
    [30] Zhao H J, Che H Z, Zhang X Y, et al. Aerosol optical properties over urban and industrial region of Northeast China by using ground-based sun-photometer measurement. Atmos Environ, 2013, 75: 270-278. doi:  10.1016/j.atmosenv.2013.04.048
    [31] Wang P, Che H Z, Zhang X C, et al. Aerosol optical properties of regional background atmosphere in Northeast China. Atmos Environ, 2010, 44(35): 4404-4412. doi:  10.1016/j.atmosenv.2010.07.043
    [32] Wu Y F, Zhu J, Che H Z, et al. Column-integrated aerosol optical properties and direct radiative forcing based on sun photometer measurements at a semi-arid rural site in Northeast China. Atmos Res, 2015, 157: 56-65. doi:  10.1016/j.atmosres.2015.01.021
    [33] Zhao H J, Che H Z, Ma Y J, et al. Temporal variability of the visibility, particulate matter mass concentration and aerosol optical properties over an urban site in Northeast China. Atmos Res, 2015, 166: 204-212. doi:  10.1016/j.atmosres.2015.07.003
    [34] Zhao H J, Che H Z, Xia X G, et al. Multiyear ground-based measurements of aerosol optical properties and direct radiative effect over different surface types in Northeastern China. J Geophys Res Atmos, 2018, 123(24): 13887-13916.
    [35] 宗雪梅, 邱金桓, 王普才. 近10年中国16个台站大气气溶胶光学厚度的变化特征分析. 气候与环境研究, 2005, 10(2): 201-208. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200502006.htm

    Zong X M, Qiu J H, Wang P C. Characteristics of atmospheric aerosol optical depth over 16 radiation stations in the last 10 years. Clim Environ Res, 2005, 10(2): 201-208. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200502006.htm
    [36] 杨琨, 孙照渤, 倪东鸿. 1999—2003年我国气溶胶光学厚度的变化特征. 南京气象学院学报, 2008, 31(1): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200801012.htm

    Yang K, Sun Z B, Ni D H. Characteristics of atmospheric aerosol optical depth over China during 1999-2003. J Nanjing Inst Meteor, 2008, 31(1): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200801012.htm
    [37] 王继志, 李多, 杨元琴, 等. 中国北方地区冬季雨雪年度变化与大气气溶胶分布特征研究. 气象与环境学报, 2011, 27(6): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201106013.htm

    Wang J Z, Li D, Yang Y Q, et al. Characteristics of annual variations of winter rain/snow and atmospheric aerosol distributions in the north of China. J Meteor Environ, 2011, 27(6): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201106013.htm
    [38] Wei J, Li Z Q, Peng Y R, et al. MODIS Collection 6.1 aerosol optical depth products over land and ocean: Validation and comparison. Atmos Environ, 2019, 201: 428-440. doi:  10.1016/j.atmosenv.2018.12.004
    [39] Che H Z, Xia X G, Zhao H J, et al. Spatial distribution of aerosol microphysical and optical properties and direct radiative effect from the China aerosol remote sensing network. Atmos Chem Phys, 2019, 19(18): 11843-11864. doi:  10.5194/acp-19-11843-2019
    [40] Zhao H J, Gui K, Ma Y J, et al. Climatological variations in aerosol optical depth and aerosol type identification in Liaoning of Northeast China based on MODIS data from 2002 to 2019. Sci Total Environ, 2021, 781. DOI:  10.1016/j.scitotenv.2021.146810.
    [41] Che H, Zhang X Y, Xia X, et al. Ground-based aerosol climatology of China: Aerosol optical depths from the China aerosol remote sensing network(CARSNET) 2002-2013. Atmos Chem Phys, 2015, 15(13): 7619-7652. doi:  10.5194/acp-15-7619-2015
    [42] Ma Y J, Zhao H J, Dong Y S, et al. Comparison of two air pollution episodes over Northeast China in winter 2016/17 using ground-based lidar. J Meteor Res, 2018, 32(2): 313-323. doi:  10.1007/s13351-018-7047-4
    [43] Zhao H J, Che H Z, Gui K, et al. Interdecadal variation in aerosol optical properties and their relationships to meteorological parameters over Northeast China from 1980 to 2017. Chemosphere, 2020, 247: 125737. doi:  10.1016/j.chemosphere.2019.125737
    [44] 赵胡笳, 马雁军, 王扬锋, 等. 沈阳一次雾霾天气颗粒物浓度及光学特征变化. 中国环境科学, 2015, 35(5): 1288-1296. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201505002.htm

    Zhao H J, Ma Y J, Wang Y F, et al. Characteristics of particle mass concentrations and aerosol optical properties during a fog-haze event in Shenyang. China Environ Sci, 2015, 35(5): 1288-1296. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201505002.htm
    [45] Zhao H J, Gui K, Ma Y J, et al. Climatology and trends of aerosol optical depth with different particle size and shape in Northeast China from 2001 to 2018. Sci Total Environ, 2021, 763. DOI:  10.1016/j.scitotenv.2020.142979.
  • 加载中
图(10) / 表(1)
计量
  • 摘要浏览量:  106
  • HTML全文浏览量:  14
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-19
  • 修回日期:  2023-12-06
  • 刊出日期:  2024-03-31

目录

    /

    返回文章
    返回