留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2020年1月哈尔滨PM2.5重污染形成机制

耿心泽 刘畅 刘旭艳 王玉龙 张智清 梁林林

耿心泽, 刘畅, 刘旭艳, 等. 2020年1月哈尔滨PM2.5重污染形成机制. 应用气象学报, 2024, 35(6): 737-746. DOI:  10.11898/1001-7313.20240609..
引用本文: 耿心泽, 刘畅, 刘旭艳, 等. 2020年1月哈尔滨PM2.5重污染形成机制. 应用气象学报, 2024, 35(6): 737-746. DOI:  10.11898/1001-7313.20240609.
Geng Xinze, Liu Chang, Liu Xuyan, et al. Formation mechanism of heavy PM2.5 pollution in Harbin in January 2020. J Appl Meteor Sci, 2024, 35(6): 737-746. DOI:  10.11898/1001-7313.20240609.
Citation: Geng Xinze, Liu Chang, Liu Xuyan, et al. Formation mechanism of heavy PM2.5 pollution in Harbin in January 2020. J Appl Meteor Sci, 2024, 35(6): 737-746. DOI:  10.11898/1001-7313.20240609.

2020年1月哈尔滨PM2.5重污染形成机制

DOI: 10.11898/1001-7313.20240609
资助项目: 

国家自然科学基金资助项目 41705109

中国气象科学研究院科技发展基金 2024KJ027

国家重点研发计划 2022YFC3200017-002

详细信息
    通信作者:

    梁林林, 邮箱: lianglinlin@cma.gov.cn

Formation Mechanism of Heavy PM2.5 Pollution in Harbin in January 2020

  • 摘要: 分析2020年1月哈尔滨重污染事件期间PM2.5的化学组成和影响因素, 采用后向轨迹聚类和权重潜在源贡献因子法定量评估区域传输对PM2.5的贡献, 讨论该重污染事件的形成机制。结果表明: PM2.5重污染事件主要来源于一次排放, 其中生物质燃烧的贡献显著, 而极低气温(-18.0 ℃)和高相对湿度(80.0%)条件可显著促进二次气溶胶的生成。基于气团后向轨迹以及权重潜在源贡献因子研究发现, 绥化、大庆、长春和松原等周边城市的区域传输对哈尔滨空气质量的影响也不可忽视。
  • 图  1  2020年1月哈尔滨重构的PM2.5质量浓度和气象因素逐日变化

    Fig. 1  Daily variations of reconstructed PM2.5 concentration and meteorological factors of Harbin in Jan 2020

    图  2  2020年1月哈尔滨二次无机离子在重构的PM2.5质量浓度中的占比

    Fig. 2  Proportions of secondary inorganic ions in reconstructed PM2.5 concentrations of Harbin in Jan 2020

    图  3  2020年1月哈尔滨SOR和NOR的逐日变化

    (1月21日数据缺失)

    Fig. 3  Daily variation of SOR and NOR of Harbin in Jan 2020

    (data missing on 21 Jan)

    图  4  2020年1月哈尔滨PM2.5中OC、EC质量浓度及其比值逐日变化

    Fig. 4  Daily variations of OC, EC concentrations with their ratio in PM2.5 of Harbin in Jan 2020

    图  5  2020年1月哈尔滨LG质量浓度与重构的PM2.5质量浓度(a)和OC质量浓度(b)的相关性

    Fig. 5  Relationship of LG concentration to concentrations of reconstructed PM2.5(a) and OC(b) of Harbin in Jan 2020

    图  6  2020年1月哈尔滨气团后向轨迹聚类图

    (742条起始高度为100 m的24 h后向气团轨迹)

    Fig. 6  Backward airmass trajectory clusters of Harbin in Jan 2020

    (clustered from 742 paths of 24 h backward trajectories with height of 100 m)

    图  7  2020年1月哈尔滨PM2.5及其主要化学成分的潜在源区

    Fig. 7  Potential source areas of PM2.5 with its main chemical components of Harbin in Jan 2020

    表  1  2020年1月影响哈尔滨的5类气团轨迹

    Table  1  Five types of airmass trajectories affecting Harbin in Jan 2020

    聚类 轨迹数量 轨迹数量占比/% 平均质量浓度/(μg·m-3)
    1 121 17.0 211.3
    2 175 24.6 190.8
    3 292 41.1 157.8
    4 103 14.5 99.0
    5 20 2.8 16.5
    下载: 导出CSV
  • [1] Pant P, Guttikunda S K, Peltier R E. Exposure to particulate matter in India: A synthesis of findings and future directions. Environ Res, 2016, 147: 480-496. doi:  10.1016/j.envres.2016.03.011
    [2] Huang X, Ding A J, Wang Z L, et al. Amplified transboundary transport of haze by aerosol-boundary layer interaction in China. Nat Geosci, 2020, 13: 428-434. doi:  10.1038/s41561-020-0583-4
    [3] 徐晓斌. 我国霾和光化学污染观测研究进展. 应用气象学报, 2016, 27(5): 604-619. doi:  10.11898/1001-7313.20160509

    Xu X B. Observational study advances of haze and photochemical pollution in China. J Appl Meteor Sci, 2016, 27(5): 604-619. doi:  10.11898/1001-7313.20160509
    [4] Health Effects Institute. State of Global Air 2020. Special Report. Boston: Health Effects Institute, 2020.
    [5] Zhang Q, Zheng Y X, Tong D, et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. PNAS, 2019, 116(49): 24463-24469. doi:  10.1073/pnas.1907956116
    [6] 陈卫卫, 刘阳, 吴雪伟, 等. 东北区域空气质量时空分布特征及重度污染成因分析. 环境科学, 2019, 40(11): 4810-4823.

    Chen W W, Liu Y, Wu X W, et al. Spatial and temporal characteristics of air quality and cause analysis of heavy pollution in Northeast China. Environ Sci, 2019, 40(11): 4810-4823.
    [7] Wang P, Liu D C, Mukherjee A, et al. Air pollution governance in China and India: Comparison and implications. Environ Sci Policy, 2023, 142: 112-120. doi:  10.1016/j.envsci.2023.02.006
    [8] 奚立宗, 把黎, 庞朝云, 等. 祁连山北坡沙尘天气气溶胶特征的飞机观测. 应用气象学报, 2024, 35(3): 311-322. doi:  10.11898/1001-7313.20240305

    Xi L Z, Ba L, Pang Z Y, et al. Aerosol characteristics of dust weather on north slope of the Qilian Mountains. J Appl Meteor Sci, 2024, 35(3): 311-322. doi:  10.11898/1001-7313.20240305
    [9] 吴啸天, 王晓妍, 郑栋, 等. 不同类型气溶胶对长三角地区地闪活动影响. 应用气象学报, 2023, 34(5): 608-618. doi:  10.11898/1001-7313.20230509

    Wu X T, Wang X Y, Zheng D, et al. Effects of different aerosols on cloud-to-ground lightning activity in the Yangtze River Delta. J Appl Meteor Sci, 2023, 34(5): 608-618. doi:  10.11898/1001-7313.20230509
    [10] Feng Y Y, Ning M, Lei Y, et al. Defending blue sky in China: Effectiveness of the "Air Pollution Prevention and Control Action Plan" on air quality improvements from 2013 to 2017. J Environ Manag, 2019, 252. DOI:  10.1016/j.jenvman.2019.109603.
    [11] 周冰雪, 朱朗峰, 吴昊, 等. 微波辐射计反演大气廓线精度及降水预报应用. 应用气象学报, 2023, 34(6): 717-728. doi:  10.11898/1001-7313.20230607

    Zhou B X, Zhu L F, Wu H, et al. Accuracy of atmospheric profiles retrieved from microwave radiometer and its application to precipitation forecast. J Appl Meteor Sci, 2023, 34(6): 717-728. doi:  10.11898/1001-7313.20230607
    [12] 齐道日娜, 何立富. 2022年我国夏季极端高温阶段性特征及成因. 应用气象学报, 2023, 34(4): 385-399. doi:  10.11898/1001-7313.20230401

    Chyi D, He L F. Stage characteristics and mechanisms of extreme high temperature in China in summer of 2022. J Appl Meteor Sci, 2023, 34(4): 385-399. doi:  10.11898/1001-7313.20230401
    [13] 王淼淼, 丁明虎, 吕俊梅, 等. 近40年中国冬季寒潮的气候特征及大气环流异常. 应用气象学报, 2024, 35(3): 298-310. doi:  10.11898/1001-7313.20240304

    Wang M M, Ding M H, Lü J M, et al. Climatology of winter cold waves and associated atmospheric circulation anomalies in China during the last 40 years. J Appl Meteor Sci, 2024, 35(3): 298-310. doi:  10.11898/1001-7313.20240304
    [14] Cheng Y, Yu Q Q, Liu J M, et al. Strong biomass burning contribution to ambient aerosol during heating season in a megacity in Northeast China: Effectiveness of agricultural fire bans?. Sci Total Environ, 2021, 754. DOI:  10.1016/j.scitotenv.2020.142144.
    [15] 张萌萌, 赵春雨, 房一禾, 等. 基于新气候态背景的中国东北地区气候变化评估与预测研究. 气象与环境学报, 2023, 39(4): 95-102.

    Zhang M M, Zhao C Y, Fang Y H, et al. Assessment and prediction of climate change in Northeast China based on new climate state background. J Meteor Environ, 2023, 39(4): 95-102.
    [16] Fu D L, Shi X F, Xing Y F, et al. Contributions of extremely unfavorable meteorology and coal-heating boiler control to air quality in December 2019 over Harbin, China. Atmos Pollut Res, 2021, 12(11). DOI:  10.1016/j.apr.2021.101217.
    [17] 李婉, 赵胡笳, 王昌双, 等. 2003—2022年东北地区气溶胶光学厚度变化特征. 应用气象学报, 2024, 35(2): 211-224. doi:  10.11898/1001-7313.20240207

    Li W, Zhao H J, Wang C S, et al. Variation characteristics of aerosol optical depth in Northeast China from 2003 to 2022. J Appl Meteor Sci, 2024, 35(2): 211-224. doi:  10.11898/1001-7313.20240207
    [18] Li B, Shi X F, Liu Y P, et al. Long-term characteristics of criteria air pollutants in megacities of Harbin-Changchun megalopolis, Northeast China: Spatiotemporal variations, source analysis, and meteorological effects. Environ Pollut, 2020, 267. DOI:  10.1016/j.envpol.2020.115441.
    [19] 柯华兵, 龚山陵, 何建军, 等. 露天生物质燃烧对地面PM2.5浓度的影响评估. 应用气象学报, 2020, 31(1): 105-116. doi:  10.11898/1001-7313.20200110

    Ke H B, Gong S L, He J J, et al. Assessment of open biomass burning impacts on surface PM2.5 concentration. J Appl Meteor Sci, 2020, 31(1): 105-116. doi:  10.11898/1001-7313.20200110
    [20] 马雁军, 赵胡笳, 刘宇飞, 等. 中国东北地区重污染事件气溶胶浓度变化与天气形势分析. 气象与环境学报, 2021, 37(5): 13-19.

    Ma Y J, Zhao H J, Liu Y F, et al. Analysis of aerosol concentration variation and weather characteristics of heavy pollution events in Northeast China. J Meteor Environ, 2021, 37(5): 13-19.
    [21] 梁林林, 孙俊英, 张养梅, 等. 临安夏季霾和清洁天气PM2.5化学组成特征比较. 环境科学, 2018, 39(7): 3042-3050.

    Liang L L, Sun J Y, Zhang Y M, et al. Comparison of chemical components characteristics of PM2.5 between haze and clean periods during summertime in Lin'an. Environ Sci, 2018, 39(7): 3042-3050.
    [22] Cheng Y, Cao X B, Yu Q Q, et al. Synergy of multiple drivers leading to severe winter haze pollution in a megacity in Northeast China. Atmos Res, 2022, 270. DOI:  10.1016/j.atmosres.2022.106075.
    [23] Sun X Z, Wang K, Li B, et al. Exploring the cause of PM2.5 pollution episodes in a cold metropolis in China. J Clean Prod, 2020, 256. DOI:  10.1016/j.jclepro.2020.120275.
    [24] 颜鹏, 郇宁, 张养梅, 等. 北京乡村地区分粒径气溶胶OC及EC分析. 应用气象学报, 2012, 23(3): 285-293. http://qikan.camscma.cn/article/id/20120304

    Yan P, Huan N, Zhang Y M, et al. Size resolved aerosol OC, EC at a regional background station in the suburb of Beijing. J Appl Meteor Sci, 2012, 23(3): 285-293. http://qikan.camscma.cn/article/id/20120304
    [25] 郭安红, 王纯枝, 邓环环, 等. 草地贪夜蛾迁飞大气动力条件分析及过程模拟. 应用气象学报, 2022, 33(5): 541-554. doi:  10.11898/1001-7313.20220503

    Guo A H, Wang C Z, Deng H H, et al. Atmospheric dynamics analysis and simulation of the migration of fall armyworm. J Appl Meteor Sci, 2022, 33(5): 541-554. doi:  10.11898/1001-7313.20220503
    [26] 马刚, 黄静, 巩欣亚, 等. 数值预报中气象卫星资料同化前处理技术进展. 应用气象学报, 2024, 35(2): 142-155. doi:  10.11898/1001-7313.20240202

    Ma G, Huang J, Gong X Y, et al. Review of pre-processing techniques for meteorological satellite data assimilation in numerical prediction. J Appl Meteor Sci, 2024, 35(2): 142-155. doi:  10.11898/1001-7313.20240202
    [27] 汪蕊, 丁建丽, 马雯, 等. 基于PSCF与CWT模型的乌鲁木齐市大气颗粒物源区分析. 环境科学学报, 2021, 41(8): 3033-3042.

    Wang R, Ding J L, Ma W, et al. Analysis of atmospheric particulates source in Urumqi based on PSCF and CWT models. Acta Sci Circumstantiae, 2021, 41(8): 3033-3042.
    [28] Wang Y Q, Zhang X Y, Draxler R R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ Model Softw, 2009, 24(8): 938-939.
    [29] Polissar A V, Hopke P K, Harris J M. Source regions for atmospheric aerosol measured at Barrow, Alaska. Environ Sci Technol, 2001, 35(21): 4214-4226.
    [30] 潘玮, 左志燕, 肖栋, 等. 近50年中国霾年代际特征及气象成因. 应用气象学报, 2017, 28(3): 257-269. doi:  10.11898/1001-7313.20170301

    Pan W, Zuo Z Y, Xiao D, et al. Interdecadal variation of haze days over China with atmospheric causes in recent 50 years. J Appl Meteor Sci, 2017, 28(3): 257-269. doi:  10.11898/1001-7313.20170301
    [31] 李睿劼, 黄梦宇, 丁德平, 等. 基于70 m3膨胀云室的暖云滴谱试验研究. 应用气象学报, 2023, 34(5): 540-551. doi:  10.11898/1001-7313.20230503

    Li R J, Huang M Y, Ding D P, et al. Warm cloud size distribution experiment based on 70 m3 expansion cloud chamber. J Appl Meteor Sci, 2023, 34(5): 540-551. doi:  10.11898/1001-7313.20230503
    [32] Zheng B, Zhang Q, Zhang Y, et al. Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmos Chem Phys, 2015, 15(4): 2031-2049.
    [33] Wang G H, Zhang R Y, Gomez M E, et al. Persistent sulfate formation from London Fog to Chinese haze. PNAS, 2016, 113(48): 13630-13635.
    [34] Zhou B T, Shen H Z, Huang Y, et al. Daily variations of size-segregated ambient particulate matter in Beijing. Environ Pollut, 2015, 197: 36-42.
    [35] Zhong J T, Zhang X Y, Wang Y Q, et al. Relative contributions of boundary-layer meteorological factors to the explosive growth of PM2.5 during the red-alert heavy pollution episodes in Beijing in December 2016. J Meteor Res, 2017, 31(5): 809-819.
    [36] Wang Y, Zhuang G S, Sun Y L, et al. The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos Environ, 2006, 40(34): 6579-6591.
    [37] Li W G, Duan F K, Zhao Q, et al. Investigating the effect of sources and meteorological conditions on wintertime haze formation in Northeast China: A case study in Harbin. Sci Total Environ, 2021, 801. DOI:  10.1016/j.scitotenv.2021.149631.
    [38] Lim H J, Turpin B J. Origins of primary and secondary organic aerosol in Atlanta: Results of time-resolved measurements during the Atlanta Supersite Experiment. Environ Sci Technol, 2002, 36(21): 4489-4496.
    [39] Yang G Y, Zhao H M, Tong D Q, et al. Impacts of post-harvest open biomass burning and burning ban policy on severe haze in the northeastern China. Sci Total Environ, 2020, 716. DOI:  10.1016/j.scitotenv.2020.136517.
    [40] Yin S, Wang X F, Zhang X R, et al. Exploring the effects of crop residue burning on local haze pollution in Northeast China using ground and satellite data. Atmos Environ, 2019, 199: 189-201.
    [41] 赵梦缘, 程瑞雪, 张春燕, 等. 大气颗粒物中左旋葡聚糖光化学的研究进展. 环境化学, 2022, 41(6): 2044-2051.

    Zhao M Y, Cheng R X, Zhang C Y, et al. Photochemistry of levoglucosan in atmospheric aerosols: A review. Environ Chem, 2022, 41(6): 2044-2051.
    [42] Liang L L, Engling G, Cheng Y, et al. Biomass burning impacts on ambient aerosol at a background site in East China: Insights from a yearlong study. Atmos Res, 2020, 231. DOI:  10.1016/j.atmosres.2019.104660.
    [43] Liang L L, Du Z Y, Engling G, et al. Improved biomass burning pollution in Beijing from 2011 to 2018. Atmos Environ, 2023, 310. DOI: 10.1016/j.atmosenv.2023.119969.
  • 加载中
图(7) / 表(1)
计量
  • 摘要浏览量:  63
  • HTML全文浏览量:  28
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-10
  • 修回日期:  2024-08-14
  • 刊出日期:  2024-11-30

目录

    /

    返回文章
    返回